
Light at the middle of the tunnel: middleboxes for selective
disclosure of network monitoring to distrusted parties

Nik Sultana
Cambridge University

Markulf Kohlweiss
Microsoft Research

Andrew W. Moore
Cambridge University

ABSTRACT
Network monitoring is vital to the administration and oper-
ation of networks, but it requires privileged access that only
highly trusted parties are granted. This severely limits op-
portunities for external parties, such as service or equipment
providers, auditors, or even clients, to measure the health or
operation of a network in which they are stakeholders, but
do not have access to its internal structure.

In this position paper we propose the use of middleboxes
to open up network monitoring to external parties using tech-
niques from privacy-preservation research. This would al-
low distrusted parties to make more inferences about the net-
work state than currently possible, without learning any pre-
cise information about the network or data that crosses it.

Thus the state of the network would be more transparent
to external stakeholders, who would be empowered to ver-
ify claims made by network operators. Network operators
would be able to provide more information about their net-
work without compromising security or privacy.

Keywords
network monitoring, security, privacy, measurement, per-
formance

1. INTRODUCTION
Interconnected networks can be mutually opaque. As

long as requests are serviced by the connected network
or its end-hosts, one does not have to understand how
the network is organised and operated. Datacentre net-
works are a good example of this: they are open to serve
clients, but closed to inspection of their internals. Many
services are being virtualised and outsourced to cloud
systems managed by third parties such as Amazon, Mi-
crosoft and Google. This brings economies of scale to
tenants, but it diminishes their control. Should a prob-
lem arise in the network, tenants are usually unable to
diagnose it directly; instead they must wait for a sup-
port technician to diagnose the problem, and the ten-
ant must trust the technician’s evaluation. Datacentre
operators employ reliability engineers around the clock
to ensure that problems are detected and addressed
quickly.

We envision a more open environment, where more
stakeholders in a network get more (albeit limited) vis-
ibility of its internals, to be able to verify the claims of
the network’s operator, and perhaps participate in the
diagnosis of problems. Stakeholders include service or
equipment providers, auditors, clients, and users of a
network.

Implementing this idea requires middlebox support.
At the very least, there needs to be an on-path appli-
ance that can interpret and answer queries from inter-
ested stakeholders. In this article we consider issues
encountered when designing such a system. We explore
the threat model, outline the current state of the art in
relevant privacy-preserving technology, and discuss how
this might be applied to allow external stakeholders to
monitor a closed network. Our contributions: formulat-
ing the problem and its requirements, outlining existing
relevant proposals of solutions, and proposing a more
comprehensive solution for this problem.

2. CONTEXT AND MOTIVATION
Many networks have external distrusted stakeholders,

and we want to enable them to make more measure-
ments of the networks in which they are stakeholders.

For example, (i) a home network could grant lim-
ited visibility to an ISP that can help diagnose malfunc-
tion or scan for malware [9]; (ii) companies could grant
auditors limited powers to ensure, for instance, that a
Chinese Wall policy is followed [6]; (iii) network oper-
ators could grant a regulator insight on whether “net
neutrality” principles are being respected, (iv) sensors
placed in a private network can be queried by an ex-
ternal party without leaking information about specific
data that crosses the network.

More advanced examples of scenario (iv) could in-
volve telemetry from IoT, healthcare, industrial devices
on both traditional and “fog” networks [5], “smart” me-
ters [21], lawful interception, or applying research tools
like RIPE Atlas [25] to closed network.

Currently, network operators are, however, reluctant
to provide external stakeholders with visibility inside
the network, since this risks privacy breach, losing trade

1



secrets to competitors, or aiding an adversary carrying
out reconnaissance. Similarly, network operators are
wary that opening up their network might make it easier
to exploit hidden vulnerabilities in their network [17].

While corporations might do full packet capture, to
be used for forensic analysis in case of a breach of secu-
rity or trust, datacentre operators only report the health
of their systems via a simplified status dashboard on
the Web, and post updates about outages to blogs or
microblogs. In some cases, network operators might al-
low forms of active monitoring to customers that have
service-level agreements (SLAs) [24].

We conjecture that further improving this state of af-
fairs is beneficial to both network operators and their
stakeholders. If a stakeholder could verify the claims of
a network operator then this is likely to improve stake-
holder satisfaction and customer retention. And stake-
holders would benefit from increased autonomy and trans-
parency. Operators are more likely to want to be more
transparent to improve their competitiveness. Network
transparency complements trustworthy cloud process-
ing [3] and provenance tracking for data [7]. Ideally,
stakeholders could both trust and verify a network’s op-
eration.

We believe that privacy-preserving technology can
help address this transparency problem. Such technol-
ogy is often intended to protect the privacy of the users
of a service. Here we use it to protect the privacy of
the service, as well as that of users, from other users
and external parties. Using this technology, the opera-
tor could allow stakeholders to make queries about the
network state, to learn things that they would not have
been able to learn otherwise, without the secrets of the
operator, or the network’s security, being compromised.
We call this network cryptometry (§4).

3. REQUIREMENT SPACE
At the very least we need (i) to obtain network read-

ings that we can trust and ascertain the source of the
readings, (ii) ensure that the readings are not tampered
or otherwise faked in transit, (iii) ensure that the read-
ings are sanitised to not leak sensitive details about the
source network.

3.1 Threat model
There are essentially three non-colluding parties at

play. For brevity, and consistency with the security lit-
erature, we refer to the network operator as the prover,
and the distrusted external stakeholder as the verifier.
We call the third party the croupier, who is trusted by
both parties, and who supplies equipment used by the
verifier on the prover’s network. This equipment pro-
vides a trust anchor for both.1

1Technologies such as Intel’s SGX are intended to
help deliver this: https://software.intel.com/en-us/

The prover might deviate from its expected behaviour
by fooling the stakeholder, by making it seem like the
network is performing better than it really is. For in-
stance, it might replace the verifier’s query with one
that results in a more favourable answer, or it could
mirror traffic to a system intended to answer queries
quickly, rather than service content and answer queries.
The verifier on the other hand might want to extract
more data from the prover, to learn more about the
network’s internals than the prover intends to reveal.

We assume that the verifier can authenticate the prover,
and thus the network it is making queries about. Fur-
thermore, the verifier is authorised to make queries to
the prover. The prover can authenticate the verifier, but
not necessarily know its identity. Subsequently rate-
limiting or other DoS-reduction measures can be ap-
plied. Similarly, the verifier can authenticate and dif-
ferentiate, but not necessarily know the identities of,
middleboxes provided by the croupier.

The prover, verifier, and the middleboxes can commu-
nicate over channels that preserves confidentiality and
integrity. Thus there is no risk of tampering by, or leak-
ing to, third parties via such channel.

Finally, the network has other stakeholders in addi-
tion to the prover and verifier—such as other tenants in
a datacentre. We assume that other stakeholders can
act maliciously (for instance, by overloading a shared
resource to disadvantage the verifier) thus it is in the
interests of both the prover and verifier to recognise
such behaviour.

3.2 Network visibility and access
The threat model is linked to the degree of visibility

and access that the verifier has to the prover’s network.
We assume that the verifier does not know the net-
work’s composition or topology, but could learn about
this through its queries.

The prover should have full control over what the
verifier can learn, as long as the verifier only learns true
measurements.

We assume that the verifier has (limited) control over
one or more nodes in the prover’s network—such as a
VM in a datacentre, workstations on a corporate net-
work, or customer premises equipment in a corporate or
home setting. This control must be acknowledged and
supported by the prover—this is usually established by
a contractual arrangement or legal requirement, but as
for croupier devices, this could be enforced using hard-
ware.

In our model, the verifier trusts computation done
on the nodes over which it has control. Furthermore it
trusts the middleboxes (provided by the croupier) that
interpret the query and answer it.

isa-extensions/intel-sgx

2



Example of information

Query Idealised method Disclosed to verifier Hidden from verifier

Reachability Ping RTT between monitor and node. Precise position of the monitor.
Path Traceroute Path length. Addresses of all nodes.

Traffic

{
summary

detail
SNMP lookup Value is in a given range. Precise value.
Packet capture A payload satisfied a property. Exact payload details.

Activity App.-specific Time taken for database to reply. (N/A: under verifier’s control.)
Resource or Load Env.-specific VM/memory ratio. Quantity of VMs and memory.

Table 1: Examples of queries that could be made by a verifier, and the prover’s choices for disclosure.

3.3 Queries and replies: expressiveness and
privacy

What kind of queries should the verifier be allowed to
ask? And whose privacy should be preserved in queries
and their answers? What should be hidden from whom?
The scope of queries is largely up to the prover—it owns
the network, and has the ultimate authority over it.
Our goal here is to ensure that if the prover commits to
answering a query then the verifier learns an answer to-
gether with evidence for its correctness from the prover
(otherwise the verifier learns that the prover is being
untruthful, or it has failed to uphold service). For ex-
ample, the verifier might learn that there is a path of
length 3 from its gateway until the verifier’s node of in-
terest, and total latency consists of h1 +h2 +h3 for the
three hops, for specific values of hi, but would not learn
the specific internal address of each hi.

We must also ensure that the integrity of the answer is
preserved. We might optionally require that the answer
is confidential from all other parties.

We briefly outline the space of queries that the prover
might commit to answering in Table 1. The idealised
method of making a query is usually very different in-
deed from the equivalent cryptographically-protected
method.

Take reachability, for example. The trusted coun-
terpart consists of a verified ping, where we need to
verify that we are pinging the right machine, and pro-
tect against relay or replay attacks. A simple proto-
col might involve an interactive session of challenge-
response computations over nonces. In the next section
we describe our proposal for how to implement network
queries without disadvantaging network throughput, se-
curity or privacy, yet providing the verifier with ade-
quate proof. Furthermore we describe how ping would
work in this setting in §4.3.

An activity query involves checking an application-
level feature, such as the time it takes to execute a
specific function, or the value of a specific variable.
Since this is assumed to be under the verifier’s control,
the prover has limited hiding ability. Notwithstand-
ing, we still want to preserve the integrity of the query

and its corresponding answer. Activity queries can be
used to check if the network operator has swapped net-
work functions on the end-host for cheaper ones—such
as a packet filter for an Intrusion Detection System
(IDS) [16, 11].

4. NETWORK CRYPTOMETRY
Our design needs to achieve three things: (1) receive

and interpret valid queries from verifiers, (2) make the
required measurements, (3) provide valid answers with-
out disclosing more information than the prover intends.

We propose a design that reduces network measure-
ment to the lagged accrual of a global audit log [22] of
network measurements. The audit log is merged from
disparate measurement-making vantage points in the
network we call cryptometros. Furthermore, we sepa-
rate between measuring the network (and appending
to the log) and querying the measurement database.
This allows the two operations to take place on differ-
ent timescales, to avoid carrying out expensive privacy-
preserving cryptography on the dataplane. Instead, the
dataplane involves cryptography that has been shown
to scale well and is amenable to hardware implementa-
tion [19]. Privacy-preserving querying of the audit log
for the result of an earlier network query needs to take
place after a time window. There has been tremendous
recent progress in related research, as described in §4.4.

4.1 Architecture
Verifiers will make queries to the system through a

proxy that combines a normal service request (e.g., an
HTTP GET) with a network query into a single packet,
and send both to the target network.

Figure 1 outlines our setup. We are inspired by Flow-
Tags [12] to add contextual information to flows; in this
case, contextual information consists of queries. A sim-
ilar idea was used by Naous et al. [19] in their verified
network primitive, described in §5. Tags will be ig-
nored by everything other than cryptometros. This is
also similar to the tiny packet programs approach [15],
in which a small number of instructions can be embed-
ded in normal network traffic, to be executed by in-path
network elements.

3



1

2

3

4 5

67

Prover’s network boundary

8

Figure 1: (1) Normal request from client is com-
bined with a network query at the verifier side,
to form a composite that is forwarded to the net-
work. Composites are preserved as they traverse
the network. (2) Cryptometros act on compos-
ites by (3) logging them, and making the re-
quired query on the network, as instructed in the
query. (4) Queries are preserved by end-hosts or
other middleboxes. (5) End-hosts may include
an answer to a query, together with their reply
to a request. Eventually cryptometro logs are
gathered into a (6) global audit log, which may
be queried via (7) privacy-preserving protocols
by (8) external distrusted stakeholders.

cryptographic digest

time, nonce, qry/ans… … …

(b) Cryptometro log

r-time, forwarder, s-time, nonce, qry/ans… … … … …

(c) Global audit log

size nonce
op
qry/ans data

packet prefix

suffix

(a) Query/answer

Figure 2: (a) Queries and answers are embedded
in packets as described in §4.2. (b) Cryptometro
locally log all queries and answers they observe
in traffic that traverses them. (c) Eventually all
cryptometro logs are collected in a global log,
which is then cryptographically queried. Log en-
tries are timestamped. In (c), R-TIME is the time
the entry was received by the audit log, and FOR-

WARDER is a pseudonym for the cryptometro that
recorded the entry. S-TIME is the time the entry
was originally recorded by that cryptometro.

Our queries can be regarded as programs that in-
struct in-path middleboxes to carry out network mon-
itoring activities, and log both the queries and the re-
quests, as described further later. We call these mid-
dleboxes cryptometros. In addition to performing nor-
mal network function, these middleboxes interpret and
transform queries gathered from normal traffic.

Cryptometros serve to attest a trusted internal view
of the network state, such that private data is not dis-
closed outside the network. A network needs to include
at least one such appliance, which must be in the path of
requests to backends. Placement of cryptometros is cho-
sen by the prover, but more cryptometros (and higher
probabilities of replying) will produce higher-resolution
answers.

We envision that some tags may be encrypted and
that most requests could be tagged with random dummy
tags, to provide cover traffic for encrypted tags and thus
prevent preferential treatment for tagged requests.

Cryptometros accumulate their observations in local
logs. Observations consist of queries and answers, as
described in §4.2. Depending on the nature of the query,
a cryptometro might execute it from its vantage point,
otherwise it will log the query, and log any answers it
observes.

Cryptometro logs are merged to form a global append-
only audit log of network events. A publicly accessible
cryptographic digest for this log guarantees that past
events cannot be tampered with, and that proofs of va-
lidity are verified with respect to the same audit log.

Data about queries and their answers is written to
this audit log, with sufficient identifying and linking in-
formation. For example, a query needs to be linked to
the node that answered it. This ensures that a ping
query was not changed to a ping to 127.0.0.1 for exam-
ple. Cryptometros are assigned unique pseudonyms by
the croupier (since we do not necessarily have access to
the naming used inside the network), which in theory
could be fresh for each query. Nodes in which the stake-
holder has an interest have fixed pseudonyms however,
since we expect to reliably refer to them from outside
the network.

A cryptometro needs to have a precise time source [8],
since all query replies are stamped before sending them
to the log.

A query is answered by the cryptometro or some other
node depending on the query (e.g., an activity query
might only be answerable by a node). For cryptometro-
answerable queries (such as traceroute), as each cryp-
tometro forwards a packet, it might answer a query with
some probability. This serves both for scalability, and
to provide the operator with further statistical means
to hide information about their network.

4



4.2 Packet and log format
We follow the approach used in FlowTags [12], tag-

ging network traffic with additional data, as shown in
Figure 2(a). There the packet prefix and suffix con-
sists of the network-level encapsulation and service re-
quest (e.g., TCP containing an HTTP GET) respec-
tively. SIZE consists of a 2-byte field specifying the
total size of the tag. NONCE is an 8-byte value used
once by the verifier, that is used both for freshness (to
prevent replay attacks) and to link answers to queries.
OP is either QRY (indicating that the DATA body is
a query) or ANS (answer). Finally, DATA contains a
specific query or answer, and optionally a signed hash
of the entire header for added integrity.

The answer is query-specific. The set of queries is
under the croupier’s control, while the set of allowable
queries is under the prover’s control. We are compiling
an API of queries that could be supported, based on
Table 1. Anything that produces observations that can
be appended to the cryptometro’s log can be queried.
We give an example for ping in the next section.

Our approach is similar to TPP [15]. The main differ-
ences are: (i) we include nonces, (ii) do not require in-
packet memory, (iii) instructions are restricted to spe-
cific queries, not low-level operations.

4.3 Example: Ping
Here we elaborate the example outlined in §3.3 us-

ing the architecture described in this section. Let qry
be the ‘ping’ network query to a machine externally
identified as X. We send this to the prover, encoded
as described in the previous section. After waiting for
the expiry of the time window required by the prover
(for the global audit log to eventually accumulate the
cryptometro logs), we query the audit log for a pair of
entries (following the tuple format described in §4.2):
(rt1, f1, st1,n1, qry) and (rt2, f2, st2,n2, ans), where qry
is our query and n1 is our nonce. We expect to find
that rt1 < rt2 and st1 < st2 (the query occurred before
the answer), and n1 = n2 (the answer links to the query
via the nonce). Furthermore, f2 = X (our intended
machine answered the query).

Note that rt1, rt2, st1, st2 appear as symbols: we do
not learn their specific values in this answer. Should
the prover allow, we could further learn that, say, these
values are bounded by certain constants. For instance,
rt2−rt1 < Y , where Y is some quantity in milliseconds.
Thus we might not learn the specific latency, but an
upper bound.

4.4 Privacy-preserving measurements
We need cryptographic evidence for standard network

measurements (via ICMP, SNMP, etc). Our solution is
based on two cryptographic tools.

First, an authenticated cryptographic log of distributed

network events that accumulates detailed logs of all
participating nodes, gateways, cryptometros, and end-
hosts.

Second, a way to prove without leaking prover secrets
that a network measurement can be observed in these
traces. For this we rely on succinct non-interactive ar-
guments of knowledge (SNARKs). Research on SNARKs
has seen amazing progress in recent years [13, 20, 2,
10]. For instance they are already used as a privacy
preserving tool for block-chain technology [18, 4]. We
propose to produce similar proof systems for a network
log by extending research into cryptographic queries
to databases [14] and graphs [26], to carry out cryp-
tographic queries over graphs (for SDN), hierarchical
structures (for SNMP), and streams (for packet traces).

4.5 Performance
Our design carefully separates dataplane operations

carried out by cryptometros, from the privacy-preserving
querying of the global audit log. This is designed to
separate the two timescales, allowing the first to in-
clude as few complex operations as possible. Expensive
privacy-preserving cryptography is carried out outside
the network’s critical service path.

To improve performance further we use rate-limiting
(to throttle queries) and sampling (which also helps
with privacy-preservation). In the first case, we prevent
too many network queries being made in quick succes-
sion, to further reduce pressure on the dataplane. In
the second case, we might only answer network queries
with a given probability, to further reduce load.

5. RELATED WORK
Verifying computations done on an opaque system is

not a novel problem, and this is receiving all the more
attention in cloud system research. We single out re-
search on the verification of the following qualities. (i)
The result of computations [20]. This involves providing
evidence that a remotely-executed user-defined function
was executed faithfully. (ii) That the resources used
were adequately quantified (and billed) [23]. This re-
search can feed the kinds of measurements made in the
“Resource or Load” row of Table 1. (iii) The for-
warding done by a network. Argyraki et al. [1] propose
a method for doing this for externally-visible forward-
ing by making observations as traffic crosses boundaries
between domains. Naous et al. [19] propose a system
called ICING to verify that a packet follows each node
in a pre-established path. This is intended to enforce
a forwarding path, while we are interested in collect-
ing information about how a closed network handles a
stakeholder’s traffic. (iv) The routing and processing
done within virtual networks, by Keller et al. [16]. This
relies on external visibility into the network in order
to make measurements. (v) The functionality, per-

5



formance and accounting of outsourced network func-
tions [11]. These ideas complement those described in
this paper, since they assume knowledge of the network
topology, while we focus on making privacy-preserving
yet trusted observations on the internals of a closed net-
work.

6. CONCLUSION
We described the problem of remotely making mea-

surements on a network over which we have no direct
visibility. We call this problem network cryptometry.
We propose that this problem could be tackled by us-
ing on-path logging appliances that feed a global au-
dit log that is queryable in a manner that prevents the
leaking of certain details, through proofs of knowledge.
This enables distrusted external stakeholders to make
measurements on the network without jeopardising the
security, privacy, and quality of service of the network
or its stakeholders.

Acknowledgements. Partly funded by EPSRC grant
EP/K034723/1 on “Networks as a Service”. We thank
Alastair Beresford, Richard Clegg, Richard Mortier, Marcin
Wójcik, Noa Zilberman, and the anonymous reviewers
for their feedback.

7. REFERENCES
[1] K. Argyraki, P. Maniatis, et al. Verifiable

Network-Performance Measurements. In
CoNEXT. ACM, 2010.

[2] M. Backes, M. Barbosa, et al. ADSNARK: nearly
practical and privacy-preserving proofs on
authenticated data. In Security and Privacy, pp.
271–286. IEEE, 2015.

[3] J. Bacon, D. Evans, et al. Middleware 2010, chap.
Enforcing End-to-End Application Security in the
Cloud, pp. 293–312. Springer, 2010.

[4] E. Ben Sasson, A. Chiesa, et al. Zerocash:
Decentralized anonymous payments from bitcoin.
In Security and Privacy, pp. 459–474. IEEE, 2014.

[5] F. Bonomi, R. Milito, et al. Fog Computing and
Its Role in the Internet of Things. MCC ’12, pp.
13–16. ACM, 2012.

[6] D. F. Brewer and M. J. Nash. The Chinese Wall
Security Policy. In Security and Privacy, pp.
206–214. IEEE, 1989.

[7] L. Carata, S. Akoush, et al. A primer on
provenance. Commun. ACM, 57(5):52–60, May
2014.

[8] J. C. Corbett, J. Dean, et al. Spanner: Google’s
Globally Distributed Database. ACM Trans.
Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[9] M. Costa, J. Crowcroft, et al. Vigilante:
End-to-end containment of internet worm
epidemics. ACM Trans. Comput. Syst.,
26(4):9:1–9:68, Dec. 2008.

[10] C. Costello, C. Fournet, et al. Geppetto: Versatile
verifiable computation. In Security and Privacy,
pp. 253–270. IEEE, 2015.

[11] S. K. Fayazbakhsh, M. K. Reiter, et al. Verifiable
network function outsourcing: Requirements,
challenges, and roadmap. HotMiddlebox ’13, pp.
25–30. ACM, 2013.

[12] S. K. Fayazbakhsh, V. Sekar, et al. Flowtags:
Enforcing network-wide policies in the presence of
dynamic middlebox actions. HotSDN ’13, pp.
19–24. ACM, 2013.

[13] C. Fournet, M. Kohlweiss, et al. ZQL: A Compiler
for Privacy-Preserving Data Processing. In
USENIX Security, pp. 163–178. Citeseer, 2013.

[14] M. Fredrikson and B. Livshits. ZØ: An
Optimizing Distributing Zero-knowledge
Compiler. In USENIX Security Symposium, pp.
909–924. 2014.

[15] V. Jeyakumar, M. Alizadeh, et al. Tiny packet
programs for low-latency network control and
monitoring. HotNets-XII, pp. 8:1–8:7. ACM, 2013.

[16] E. Keller, R. B. Lee, et al. Accountability in
Hosted Virtual Networks. VISA ’09, pp. 29–36.
ACM, 2009.

[17] M. Lennon. Cisco Reviewing Code After Juniper
Backdoor Hack. Securityweek.com, Dec 2015.

[18] I. Miers, C. Garman, et al. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and
Privacy, pp. 397–411. IEEE, 2013.

[19] J. Naous, M. Walfish, et al. Verifying and
Enforcing Network Paths with Icing. CoNEXT
’11, pp. 30:1–30:12. ACM, 2011.

[20] B. Parno, J. Howell, et al. Pinocchio: Nearly
Practical Verifiable Computation. In Security and
Privacy, pp. 238–252. IEEE, 2013.

[21] A. Rial and G. Danezis. Privacy-preserving smart
metering. WPES ’11, pp. 49–60. ACM, 2011.

[22] B. Schneier and J. Kelsey. Secure audit logs to
support computer forensics. ACM Trans. Inf.
Syst. Secur., 2(2):159–176, May 1999.

[23] V. Sekar and P. Maniatis. Verifiable resource
accounting for cloud computing services. CCSW
’11, pp. 21–26. ACM, 2011.

[24] J. Sommers, P. Barford, et al. Accurate and
Efficient SLA Compliance Monitoring.
SIGCOMM Comput. Commun. Rev.,
37(4):109–120, Aug. 2007.

[25] R. N. Staff. RIPE Atlas. The Internet Protocol
Journal, 18(3):2–26, Sept 2015.

[26] Y. Zhang, C. Papamanthou, et al. ALITHEIA:
towards practical verifiable graph processing. In
G. Ahn, M. Yung, et al., eds., Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pp. 856–867. ACM, 2014.

6


