
Proof Search for Minimal Logic in Haskell

Nik Sultana1

Mathematical Institute,

University of Munich,

Germany

1
nik.sultana@yahoo.com

Abstract

This report describes a Haskell implementation of Schwichtenberg’s proof search algorithm. Implementations
of the algorithm’s dependencies are also described: Wand’s type inference algorithm, Normalisation by
Evaluation, and Pattern Unification.

Contents

1 Introduction 3

1.1 Running the proof system . 3
1.2 Notation . 3

2 Terms 4

2.1 Representation . 4
2.2 Class of terms . 4

2.2.1 Instantiations . 5
2.3 Translation . 6
2.4 Substitution . 6
Notes . 7

3 Types 8

3.1 Type definitions . 8
3.2 Constraint generation . 9
3.3 Constraint solution . 10

3.3.1 Auxilliary functions . 10
3.4 Main function . 11
3.5 Examples . 11

4 Normalisation by Evaluation 12

4.1 Semantic values . 12
4.2 Evaluation function . 12

4.2.1 Context . 13
4.3 Reflect and Reify . 13
4.4 Main function . 13
4.5 Examples . 14
Notes . 14

5 Pattern unification 15

5.1 Quantifier prefix . 15
5.2 Q-Terms . 15
5.3 Patterns . 16
5.4 Pattern unification . 16

5.4.1 Pruning . 18
5.4.2 Auxiliary functions . 19

5.5 Main function . 20
5.6 Examples . 20

1

Notes . 21

6 Proof system 22

6.1 Supporting definitions . 22
6.1.1 Lifting combinators . 23
6.1.2 Syntactic checks . 23
6.1.3 Harrop normal form . 23

6.2 Theorem prover . 24
6.2.1 Strip . 26
6.2.2 Resolve . 27

6.3 Auxilliary functions . 30
6.4 Main function . 30

7 Conclusion 31

Acknowledgements 31

A Examples 32

A.1 Definitions . 32
A.2 Example 1 . 32
A.3 Example 2 . 33
A.4 Example 3 . 35

B Supporting functions 40

Bibliography 41

Index 42

2

Chapter 1

Introduction

The theorem prover described in this report accepts formulas in a decidable fragment of minimal quantifier
logic and, if they are theorems, returns corresponding proof objects as terms in the simply-typed λ-calculus.
It implements the algorithm described by Schwichtenberg (2004) based on a restricted higher-order uni-
fication described by Miller (1991). This proof search algorithm has been used in the MinLog

1 proof
assistant. The algorithm’s definition assumes terms to be in long normal form; normalisation is carried out
here through ‘normalisation by evaluation’ (Berger & Schwichtenberg 1991). This last algorithm includes
type-indexed functions; types are constructed by means of the type reconstruction algorithm described by
Wand (1987). The report’s structure mirrors the dependencies of the components making up the proof
system. These have been implemented in Haskell (Jones 2003) using the so-called ‘Glasgow extensions’.

1.1 Running the proof system

The prover is intended to be run in Haskell’s top-level. The code presented here has been tested using GHCi
version 6.4.1. Unimportant parts of the source code have been omitted from this report, but the source file
of this report also doubles as the full Haskell source code of the implementation in literate programming
style. Not all the definitions in this report will immediately appear to be Haskell definitions; this is because
the source code presented here has been formatted using the lhs2TEX2 tool for improved readability.

1.2 Notation

This report is generated from the source Haskell code but has been carefully formatted to make the notation
more widely recognisable. The symbol = denotes definition, and the equality test is denoted by the ≡ symbol.
The arrow → is used both in type signatures and in meta (Haskell) level λ-abstractions. A possibly-empty
list of items ~x is typed [τ] for some type τ , and symbols [] and infix : denote nil and cons respectively.
Variables v, x, y, z range over variables, r, s, t over terms – or Q-terms, or patterns: the context will render
this clear. Variable Q ranges over quantifier prefixes, n over integers, and variables ρ and σ range over
substitutions.

The distinction between meta and object levels in terms of notation is as follows: λ denotes meta-
abstraction; object-level abstraction is denoted by λλ. Object-level application is denoted by •, while at
meta-level it is denoted by either $ or juxtaposition. The symbol · indicates an empty place in a partially-
applied function.

1http://www.minlog-system.de/
2http://people.cs.uu.nl/andres/lhs2tex/

3

http://www.minlog-system.de/
http://people.cs.uu.nl/andres/lhs2tex/

Chapter 2

Terms

This chapter will describe the implementation of λ-term representations and some standard definitions over
them. These term representations are inter-translatable and will be instantiated in a typeclass called Terms

in §2.2. In the final chapter formulas and sequents too will be instantiated in this class to facilitate their
handling. The definitions in this chapter lay the foundations for the chapters that follow, and it concludes
with a definition of substitutions and their composition.

2.1 Representation

Two representations for expressions will be defined, both of which use concrete names for variables. At times
it is more convenient to use one representation over the other. The first definition consists of the standard
notation for λ-expressions.

data Exp

= String -- variables
| λλString Exp -- abstraction
| Exp • Exp -- application

The second definition uses functor-arguments notation – that is, the operands in nested applications are
collected into a list of operands, as are the variable names in nested abstractions. The symbols used above
to denote object-level abstraction and application are overloaded, but the intended representation should
be clear from the context of use.

data FAE

= String

| λλ[String] FAE

| FAE • [FAE]

2.2 Class of terms

Irrespective of the representation used for terms – and assuming concrete variable naming – one expects
certain operations to be definable over terms. These operations are collected to define the class of terms,
and the two representations of terms defined above are made instances of this class. In the chapters that
follow additional instances of this class will be defined, such as Q-terms described in Chapter 5.

4

class Term a where

FV :: a → [String]
BV :: a → [String]
· † :: a → a -- read “compact”
· ‡ :: a → a -- read “compact1”
· ⇓ ::a → a -- read “normalise”

The role of compact is to standardise the presentation of terms in representations, such as FAE, in which
a normal form might be expressed in various ways – this contrasts with Exp values for which compacting
behaves like the identity function. Compacting acts on the dominant constructor in an expression, and
subexpressions are subsequently handled by compact1. The expected behaviour of the other functions is
standard. Definitions can now be made over the whole class due to the interface shared by its members,
irrespective of the precise details of how the interface is implemented.

isClosed :: Term a ⇒ a → Bool

isClosed t = (FV t) ≡ []

2.2.1 Instantiations

In this section the representations of terms that were defined earlier are made instances of the class of terms.
The instantiation of Exp is straightforward and will not be given explicitly here. For this representation,
compact behaves like the identity function, and normalise invokes the normalisation-by-evaluation function
that will be described in Chapter 4.
In the instantiation of FAE, compact has more interesting behaviour and standardises the presentation of
nested abstractions and applications. This is quite different from normalising a term since compact acts
on a more superficial level. Functions defined over this representation of terms may depend on their input
terms being in a compact form. In this instantiation normalise invokes the normalisation function defined
for Exp terms, then transforms terms between representations by using the homomorphisms defined in the
next section.

instance Term FAE where

FV = nub ◦ FVFAE

BV = nub ◦ BVFAE

x† = x • []
t† = t ‡

x‡ = x

(λλx r)‡ =
case x of

[] → r ‡
vs → case r of

v → λλvs v

λλv r ′ → (λλ(vs ++ v) r ′) ‡

r ′ • s ′ → λλx ((r ′‡) • ((·‡)
−→
s ′))

(r • s)‡ =
case s of

[]→ r ‡
→ case r of

r ′ • s ′ → (r ′ • (s ′ ++ s)) ‡
→ (r‡) • ((·‡) −→s)

5

t ⇓=

let t ′ = normalisNbE (t
Exp

)
in case t ′ of

Nothing → t

Just t ′′ → (t ′′
FAE

) †

2.3 Translation

The isomorphism between the representations defined for λ-terms is witnessed by the functions defined next.
xFAE = x

(λλx r)
FAE

= λλ[x] (rFAE)

(r • s)
FAE

= (rFAE) • [sFAE]

The second function works in the opposite direction.

xExp = x

(λλx r)
Exp

=
let mkAbs [] r = r

mkAbs (x : xs) r = λλx (mkAbs xs r)

in mkAbs x (rExp)

(r • s)
Exp

=
let mkApp r [] = r

mkApp r (s : ss) = mkApp (r • (sExp)) ss

in mkApp (rExp) s

2.4 Substitution

This section defines substitution over Exp-values. The equivalent function over FAE is definable using the
homomorphisms from the previous section. Some operations seemed more natural to define over Exp than
over FAE, and vice versa. For this reason, normalisation (Chapter 4) is defined over Exp and unification
(§ 5.4) over FAE. It is useful to assume that, after substitution, terms are brought into long normal form
– this is effected by the functions that invoke the substitution. The following definition formalises that a
value of type Subst is the graph of an Exp-substitution function.

type Subst = [(String ,Exp)]
The next definition interprets a substitution into function over terms in order to facilitate its application.

s{v 7→ r} =
case s of

x →
if x ≡ v

then r

else x

λλx t →
if x 6≡ v

then λλx (t{v 7→ r})
else λλx t

s • t → (s{v 7→ r}) • (t{v 7→ r})

6

Function mkSubst lifts the previous definition on single substitutions to lists of substitutions – it function-
alises values of Subst. One could expect that mkSubst will appear partially-applied in definitions.

mkSubst [] r = r

mkSubst ((v , r) : ss) t = mkSubst ss (t{v 7→ r})

Composition

The composition of substitutions σ1 and σ2, denoted by σ1 # σ2, involves the following steps:

• First, dropExtra trims away from σ2 any maps that are also defined in σ1;

dropExtra :: Subst → Subst → Subst

dropExtra [] σ2 = σ2

dropExtra σ1 [] = σ1

dropExtra (x : xs) (y : ys) =
if fst x ≡ fst y

then dropExtra xs (dropExtra (x : xs) ys)
else dropExtra xs (y : (dropExtra (x : xs) ys))

• Substitution σ1 is then applied to the value-terms of σ2. This makes use of the function mkSubst

defined earlier. The definition of composition follows:

σ1 # [] = σ1

[] # σ2 = σ2

σ1 # σ2 = remSelfMap [(x ,mkSubst σ1 r) | (x , r)← (dropExtra σ1 σ2)]

• The last line of the previous definition refers to a function remSelfMap. This function removes maps
of the sort x 7→ x from a substitution.

remSelfMap :: Subst → Subst

remSelfMap [] = []
remSelfMap (x : xs) =

case x of

(v , v ′)→
if v ≡ v ′

then remSelfMap xs

else rest

otherwise → rest

where rest = x : (remSelfMap xs)

Notes

It would benefit the implementation to have separate optimised normalisation functions for each represen-
tation of λ-terms, or perhaps use a single representation throughout. Against the backdrop of the usual
contention between readability and performance, one would expect that this would diminish readability.

Some definitions described in this chapter could be made more generic: for instance, in the representation
types described in §2.1, the type of names could be made a parameter rather than fixed as a string. Similarly,
the definition of Subst could specify its right components to be values of some type a in the class Term.
In addition, one could make Subst into an ADT to restrict the formation of substitutions – to ensure, for
example, that the graphs are functoid.

7

Chapter 3

Types

This chapter describes an implementation of the type reconstruction algorithm described by Wand (1987).
The algorithm has been modified to work with open terms: this is done by assigning distinct free variables
distinct type variables. This assignment corresponds with the principle that in the absence of constraints a
variable can have any type.

Wand’s algorithm operates in two phases: the first phase involves traversing a term to generate typing
constraints; these constraints are then solved using first-order unification.

3.1 Type definitions

The language of types consists of individuals and functions, formalised by the following definition. The
overall system will only handle terms typable in this class.

data τ
= O

| τ ⇒ τ

The type reconstruction algorithm uses the following types of intermediate values:

• TVariable is the denumerable source of type variables.

• Type τ ′ is the general analogue to τ , or type schemes. The symbols τ ′ and τ are used to both represent
types and range over their values.

data τ ′

= τ ′ ◦
⇒ τ ′

|
◦

TVariable

• TEqn formalises equations between type schemes. A list of TEqn forms the type of unification prob-
lems: a unification problem is a set of equations.

type TEqn = (τ ′, τ ′)

• Γ is a typing context: a finite map from term variables to types. The symbol Γ is used to denote both
the type of contexts and also their values.

type Γ = (String → τ ′)

8

• Goal values are triples consisting of a typing context, an expression that needs to be typed, and the
type calculated up to that point.

type Goal = (Γ,Exp, τ ′)

• Subs are substitution functions defined over type schemes.

type Subs = (τ ′ → τ ′)

3.2 Constraint generation

The implementation of the constraint-generation phase follows closely the definition given by Wand (1987): it
is organised into an algorithmic skeleton that invokes the more specific actionTable function. The algorithm
has been modified to work with open terms in the following way: the function undefInit generates an initial
typing context by mapping distinct free term variables to distinct type variables, and also provides the
function skeleton with the seed value for fresh type variable names.

undefInit :: Exp → (TVariable , Γ)
undefInit r =

let fvs = (nub ◦ FVExp) r

fvl = ((toInteger (length fvs)) :: TVariable)

fvl ′ = (λx →
◦
x)
−−−−−−−−−→
(countUp fvl)

undef = mapp fvs fvl ′ -- build a map from free variable names to fresh types
-- as far as the type-checker is concerned these would be undefined.

in (fvl , undef)

The next two functions together generate constraints to be solved by unification. Function skeleton

iterates the application of actionTable to the initial goal and produces both a unification problem and also
the fresh variable name it started with. The latter will be used by the function typeOf, defined further down.

skeleton :: Exp → ([TEqn],TVariable)
skeleton r =

let loop :: ([TEqn], [Goal],TVariable)→ ([TEqn], [Goal],TVariable)
loop (l , [],mt) = (l , [],mt)
loop (l , (g : gs),mt) = loop (l ′ ++ l , gs ++ g ′,mt ′)

where (l ′, g ′,mt ′) = actionTable g l mt

(eqns, ,) = loop init -- extract the unification problem
in (eqns , initv)
where

(initv , undef) = undefInit r -- produces initial variable and also initial typing context

g = (undef , r ,
◦

initv) -- initial goal; use initial typevar ‘init‘
init = ([], [g], initv + 1) -- (init + 1) is the next fresh variable

Function actionTable refines goals and, in doing so, produces unification problems.

actionTable :: Goal → [TEqn]→ TVariable → ([TEqn], [Goal],TVariable)
actionTable (Γ, x , τ ′) l mt = ([(τ ′, Γ x)], [],mt)
actionTable (Γ, r • s , τ ′) l mt = ([], [g1 , g2],mt + 1) -- adds two new goals

where

g1 = (Γ, r ,
◦

mt
◦
⇒ τ ′)

9

g2 = (Γ, s ,
◦

mt)

actionTable (Γ, λλv r , τ ′) l mt = ([(τ ′,
◦
n1

◦
⇒

◦
n2)], [(Γ

′, r ,
◦
n2)],mt + 2) -- refines the goal

where

n1 = mt

n2 = mt + 1

Γ′ = λx → if (x ≡ v) then
◦
n1 else (Γ x) -- extends the typing context

3.3 Constraint solution

The type inference process concludes with the generation of a principal type for the term, if one exists, by
solving the constraints generated during the first phase. A solution to a unification problem is a substitution

σ such that, for each equation r
?
= s in the problem, it is the case that σr ≡ σs.

foUnifn :: [TEqn]→ Maybe Subs

foUnifn p =
case p of

[]→ Just id

((τ ′
1

◦
⇒ τ ′

2,
◦
n) : es)→ foUnifn ((

◦
n , τ ′

1
◦
⇒ τ ′

2) : es)

((τ ′
1

◦
⇒ τ ′

2, τ
′′
1

◦
⇒ τ ′′

2) : es)→ foUnifn ((τ ′
1, τ

′′
1) : (τ ′

2, τ
′′
2) : es)

(p@(
◦
n, τ ′

1
◦
⇒ τ ′

2) : es)→
if occursCheck n (snd p)
then Nothing

else composeF p n es

(p@(
◦
n1,

◦
n2) : es)→

if n1 ≡ n2

then foUnifn es

else composeF p n1 es

where composeF p n es =
let f = (snd p){n 7→ ·}

g (p1 , p2) = (f p1 , f p2) -- to map over list of pairs
rest = foUnifn (g −→es)

in case rest of

Nothing → Nothing

Just s → Just (s ◦ f)

3.3.1 Auxilliary functions

Function occursCheck is an elementary check made during unification, subst constructs substitutions over
type constraints, and leastInstance coerces type schemes into simple types – thus rendering the types, which
are calculated by this algorithm, usable by the implementation of normalisation-by-evaluation (Chapter 4).

occursCheck :: TVariable → τ ′ → Bool

occursCheck i
◦
n= i ≡ n

occursCheck i (τ ′
1

◦
⇒ τ ′

2) = (occursCheck i τ ′
1) ∨ (occursCheck i τ ′

2)

10

τ ′{i 7→
◦
n} = if n ≡ i then τ ′ else

◦
n

τ ′{i 7→ (τ ′
1

◦
⇒ τ ′

2)} = (τ ′{i 7→ τ ′
1})

◦
⇒ (τ ′{i 7→ τ ′

2})

leastInstance :: τ ′ → τ

leastInstance
◦
n= O

leastInstance (t1
◦
⇒ t2) = (leastInstance t1)⇒ (leastInstance t2)

3.4 Main function

Function typeOf is the principal export of this module. It first obtains a unification problem and an initial
variable from skeleton, solves the problem to obtain a substitution function – if one exists – using foUnifn,
and applies this substitution to the initial variable.

typeOf r =
let (eqns , init) = skeleton r

in case (foUnifn eqns) of

Nothing → Nothing

Just σ → Just (σ
◦

init)

3.5 Examples

typeOf (λλx (x • x))
 Nothing

typeOf (λλf (λλx (f • x)))

 Just ((
◦

3
◦
⇒

◦

4)
◦
⇒ (

◦

3
◦
⇒

◦

4))

typeOf x

 Just
◦

0

typeOf (x • y)

 Just
◦

2

typeOf (λλx y)

 Just (
◦

2
◦
⇒

◦

0)

11

Chapter 4

Normalisation by Evaluation

In outline, NbE works by first evaluating a term then reifying the resulting value into a term that is β-normal
and η-long. The proof search process depends on unification, which is described in the next chapter, and
which operates on normal terms. The implementation described below closely follows the description on
Wikipedia1, except that it has been modified to work with open terms.

4.1 Semantic values

The meaning of terms consists in functions between semantic values and constants of the individual type:
these are named LAM and SYN respectively. Since we must also cater for open terms, and there is nothing
we can assume about free variables, free variables are treated as syntactical thunks in the space of semantic
values. These thunks are constructed by FREE. As a result of having these additional values, we also need
to represent particular applications explicitly in the semantic space: because applying an open term to a –
possibly open – term cannot otherwise yield a semantic value. The constructor for combinations is APPLY

and is parametrised by two semantic values and the type of the operand: the type needs to be stored in
order to be used by the type-indexed function reify when generating a term from a semantic value. This
will be elaborated further below.

data Sem

= SYN Exp

| LAM (Sem → Sem)
| APPLY Sem Sem τ -- occurs when the operator is a free variable,

-- whereupon a LAM cannot be constructed.
| FREE Exp

4.2 Evaluation function

The function defined next interprets terms into values of Sem. This function is called at the start of the
NbE process – cf. the function nbe in §4.4. As is normally the case, this function is parametrised by a
context, as well as the term to be evaluated.

1http://en.wikipedia.org/wiki/Normalisation by evaluation

12

http://en.wikipedia.org/wiki/Normalisation_by_evaluation

Jx Kg = lookup ctx g x

Jλλx rKg = LAM (λy → JrK(add ctx g x y)) -- functions built by threading
-- the arguments through the meaning.

Jr • sKg =
case JrKg of

LAM w → w (JsKg)
FREE t → APPLY (FREE t) (JsKg) (leastInstance τ ′) -- this caters for open terms

where (Just τ ′) = typeOf s -- note type info kept in APPLY thunks.
-- the following line nests two APPLYs since the first cannot be evaluated
-- functionally (as in the case of (LAM s) above).

r ′@(APPLY)→ APPLY r ′ (JsKg) (leastInstance τ ′)
where (Just τ ′) = typeOf s

4.2.1 Context

The previous function is parametrised by a context mapping variable names to semantic values. As with
substitutions, defined in §2.4, contexts are represented by their graphs. The implementation is straightfor-
ward and the details will be omitted, save that the functions lookup ctx and add ctx are defined over the
type of contexts.

4.3 Reflect and Reify

Functions reflect and reify – denoted by ↑xt and ↓xt – are type-indexed functions whose other parameters
are the last-used variable x, from which to generate fresh variables, and expressions and semantic values
respectively.

↑xO r = SYN r

↑x(τ⇒τ2)
r = LAM (λw →↑xτ2

(r • (↓xτ w)))

The function reify has a slightly more complex definition than reflect because of its sensitivity to open
terms: if we were to restrict our attention to closed terms then the first two clauses of reify would have been
sufficient. Note that ♯x produces the next fresh variable after accepting the current fresh variable x.

↓xO (SYN r) = r

↓x(τ⇒τ2)
(LAM r) =

let x ′ = ♯x
x ′′ = ♯x ′

in λλx ′ (↓x
′′

τ2
(r $ (↑x

′

τ x ′)))

↓xτ (APPLY r s τ2) =
let x ′ = ♯x

in (↓x(τ2⇒τ) r) • (↓x
′

τ2
s)

↓xτ (FREE r) = r -- behaves like SYN

4.4 Main function

The function nbe combines the above definitions into an NbE implementation: starting with “a” as the first
fresh variable, the meaning of expression e of type t is reified.

nbe τ t =↓aτ (JtKempty ctx)

13

The principal export of this module is the function normalisNbE, which combines the functionality of Wand’s
algorithm and nbe.

normalisNbE t =
case (typeOf t) of

Nothing → Nothing

Just τ ′ → Just (nbe (leastInstance τ ′) t)

4.5 Examples

The next set of definitions are drawn from the Wikipedia article cited earlier too.
k = λλx (λλy x)
s = λλx (λλy (λλz ((x • z) • (y • z))))
skk = (s • k) • k

testrun = nbe (O ⇒ O) skk

Some results of the NbE implementation are presented next.
testrun

 λλa′ a′

normalisNbE (F • skk)
 Just (F • (λλa′ a′))

normalisNbE (skk • F)
 Just F

normalisNbE (λλx (skk • F))
 Just (λλa′ F)

Notes

The implementation would benefit, in terms of clarity, from a ‘cleaner’ handling of fresh variables. It can
be rendered more generic by making abstract the type of names, and turning Ctx into an ADT.

14

Chapter 5

Pattern unification

The proof search algorithm that will be described in the next chapter translates proof problems into unifica-
tion problems – more specifically, the unification of patterns. Patterns are instances of a restricted class of
λ-terms within a broader class of Q-terms. A Q-term is a pair consisting of a quantifier prefix Q and a term
whose free variables are captured by the quantifier prefix. A quantifier prefix is an instance of a prefix class,
as used in logic to classify formulas: examples of well-known prefixes include the Bernays-Schönfinkel class
∃∗∀∗ and the Ackermann class ∃∗∀∃∗, both for FOL. The restricted class from which patterns are drawn is
the so-called Lλ class: the quantifier prefix for this class is ∀∗∃∗∀∗.

Key notions will be formalised next, such as Q-terms and patterns, following which the unification
algorithm over patterns is defined. The chapter concludes with applications of the algorithm to some
examples. The principal references for this chapter are the articles by Schwichtenberg (2004), Miller (1991)
and Nipkow (1993). In particular, some of the examples at the end of the chapter were drawn from Nipkow’s
article.

5.1 Quantifier prefix

Quantifier prefixes will be restricted to the class ∀∗∃∗∀∗: the variables bound in each segment are called
signature, flexible, and forbidden variables respectively. A quantifier prefix is implemented here as an abstract
datatype. This ensures that it can be built and queried using a restricted set of functions and, consequently,
that prefixes are restricted to the class of interest. The precise details of the ADT’s implementation will
be omitted and the behaviour of the interface functions will be summarised instead: nullary empty yields
a prefix devoid of bound variables; taking Q to range over prefixes and x over variables, Q+

Lx, Q+
∀
x, and

Q+
∃
x denote adding x to the signature, flexible, and forbidden variables respectively; Q−

Lx, Q−

∀
x, and Q−

∃
x

denote removing x from being a signature, flexible, and forbidden variable respectively; and finally QL, Q∃,
Q∀ return Q’s signature, flexible and forbidden variables respectively as a list.

5.2 Q-Terms

A Q-term is formalised as a pair consisting of a quantifier prefix and a term. In unification one tends to work
with terms represented in functor-arguments notation, which was defined in §2.1. Q-terms are instantiated
in the class Term, which was defined in §2.2, as shown below.

instance Term QTerm where

FV (q, t) = FV t \\ (qL ++ q∃ ++ q∀)
BV (q, t) = nub $ BV t ++ qL ++ q∃ ++ q∀
(q, t)† = (q, t†)

15

(q, t)‡ = (q, t‡)
(q, t) ⇓= (q, t ⇓)

5.3 Patterns

Patterns are Q-terms for which the quantifier prefix is ∀∗∃∗∀∗ and whose terms are restricted as follows:

• if u is forbidden in Q and ~r are Q-terms, then u • ~r is a Q-term;

• if Y is flexible in Q and ~z are distinct variables forbidden in Q, then Y • ~z is a Q-term;

• if r is a Q+
∀
z-term then λλz r is a Q-term.

Also note that patterns are higher-order: flexible variables may be function variables. The function isPattern

detects whether a given Q-term is a pattern – or equivalently, an element in Lλ. In order to be checked, a Q-
term must be in compact form: this ensures uniform treatment. The checking function sees to normalising a
Q-term before applying tests to check whether it is a pattern. It disregards the quantifier prefix and focuses
on the structure of terms, since by the definition of Q-terms the quantifier prefix is restricted to a particular
class.

isPattern :: QTerm → Bool

isPattern (q, z) = z ∈ (qL ++ q∃ ++ q∀)

isPattern (q, λλz r) = isPattern (foldl (·+
∀

) q z , r)
isPattern (q, u • r) =

if u ∈ qL ∨ u ∈ q∀
then let r ′ = (λx → (q, x)) −→r -- turn each term in “r” into a Q-term

in foldr (∧) True (isPattern
−→
r ′) -- check that operands are patterns

else if u ∈ q∃
then let

-- forbd tests that each element in list is a forbidden var.
forbd l = foldR test True l

where test z xs next =

case (zExp) ⇓ of

λλz1 (z ′′ • z2)→
if z1 ≡ z2

then z ′′ ∈ q∀ ∧ next

else False

otherwise → False

in distinct r ∧ forbd r

else False -- since “u” does not appear in quantifier prefix
isPattern = False

5.4 Pattern unification

The Q-prefix carries over to unification problems too: a Q-unification problem is a unification problem in
the context of quantifier prefix Q and is formalised as follows:

type UProblem = (QPrefix ,Eqns FAE)
type Eqns a = [(a, a)]

Values of UProblem could also be specified to be a list of Q-terms, but it is more convenient to work
with the definition given above since it reflects the expectation that all the Q-terms share the same prefix.

16

It has been proved, in the articles cited earlier, that the unification problem for Lλ is decidable, yields most
general unifiers, and that its quantifier prefix class is closed under unification. The type UProblem is made
an instance of Term; the details are omitted since the instantiation is straightforward.

A unification problem will be solved iteratively by a function of type UProblem ⇀ (UProblem, Subst).
Solving the problem involves refining the problem and accumulating a substitution function. This process
terminates either when the problem is trivial – that is, all its equations are identities – or when a solution
cannot be found. If the problem is solvable, the substitutions of sub-problems are composed to yield a unifier
for the problem we started with. A successful solution process could be illustrated as shown below, where
U0 denotes the original Q-unification problem, and Ui the ith refinement.

U0 −→ρ1
U1 −→ρ2

U2 −→ρ3
· · · −→ρn−1

Un−1 −→ε Un

Let ρn be ε. The solution, denoted by φ, to U0 is then (ρ1 # · · · # ρn) ↾ Q∃. Given the iterative nature of
the algorithm φ can be expressed as (ρ1 # φ′) ↾ Q∃ where φ′ is the solution to U1. The pattern unification
algorithm is defined next by cases on the shape of its input.

unify ′ :: UProblem → Maybe (UProblem ,Subst)
unify ′ p@(q, []) = Just (p, []) -- case: trivial
unify ′ p@(q, (e@(r , s) : es)) =

if r ≡ s -- case: identity
then Just ((q, es), [])
else case (r , s) of

(λλx r ′, λλy s ′)→
if x 6≡ y -- case: xi
then Nothing

else Just ((q ′, ((r ′, s ′) : es)), [])

where q ′ = foldl (·+
∀
) q x

(f • r ′, g • s ′)→
if (f ∈ qL ∧ g ∈ qL) ∨ (f ∈ q∀ ∧ g ∈ q∀) -- case: rigid-rigid
then

if f 6≡ g

then Nothing

else

let r ′s ′ = zip r ′ s ′

in Just ((q, (r ′s ′ ++ es)), [])
else

if (f ∈ qL ∨ f ∈ q∀) ∧ g ∈ q∃ -- case: rigid-flex
then Just ((q, ((swap e) : es)), [])
else unify ′′ p -- hand over to handle other cases.

otherwise → unify ′′ p

unify ′′ (q, ((f • r ′, g • s ′) : es)) =
if f ∈ q∃ ∧ g ∈ q∃ -- case: flex-flex
then

if f ≡ g

then

let f ′ = ♯f (q∃)

q ′ = (q−

∃
f)+

∃
f ′

ρ = [(f , (λλ(pr ′q) (f ′ • w))
Exp

)]
w = r ′ ⋓ s ′

in Just ((q ′,mapPair ρfun es), ρ)

17

else -- with different heads
let f ′ = ♯f (q∃)

q ′ = ((q−

∃
f)−

∃
g)+

∃
f ′

ρ = [(f , (λλ(pr ′q) (f ′ • w))
Exp

), (g, (λλ(ps ′q) (f ′ • w))
Exp

)]
w = r ′ ∩ s ′

in Just ((q ′,mapPair ρfun es), ρ)
else unify ′′′ (q, ((f • r ′, g • s ′) : es))

unify ′′ p = unify ′′′ p

unify ′′′ (q, ((f • r ′, t) : es)) =
if ¬ (f ∈ q∃) -- case: flex-rigid
then Nothing

else

if f ⊆Λ t -- occurs check
then Nothing

else

if shouldPrune q r ′ t -- pruning necessary
then case canPrune (q, t) [] of

Nothing → Nothing -- pruning failed
Just ([(v , e)], v ′)→

let q ′ = (q−

∃
v)+

∃
v ′

ρ = [(v , e)]

in Just ((q ′,mapPair ρfun es), ρ)
else -- explicit definition

let q ′ = q−

∃
f

ρ = [(f , (λλ(pr ′q) t)
Exp

)]

in Just ((q ′,mapPair ρfun es), ρ)

unify ′′′ = Nothing

5.4.1 Pruning

The flex-rigid case in the unification process may involve pruning away free – actually, loose – forbidden
variables if they appear on only one side of an equation. Function shouldPrune tests whether pruning is
needed, and canPrune attempts to prune. If the former is true but the latter fails then the unification
process fails.

shouldPrune :: QPrefix → [FAE]→ FAE → Bool

shouldPrune q l t = (shouldPrune ′ q l t) 6≡ [] -- wraps around the next function.

shouldPrune ′ :: QPrefix → [FAE]→ FAE → [String] -- returns list of forbidden variables
shouldPrune ′ q l t = let frees = FV t -- free in ”t” that should be pruned.

forbs = [x | x ← frees , x ∈ q∀]

frees ′ =
⋃

FV
−→
l

in forbs \\ frees ′

The arguments expected by shouldPrune’ are: the quantifier prefix – from which the forbidden variables
are drawn, a list of operands from the left-hand-side of the (flex-rigid) equation, and the term on the right-
hand-side. The function returns the forbidden variables that occur loose on the right-hand-side but not on
the left. Pruning will act to remove this disparity, but this might not always be possible. The function
described next accepts a term to prune and a list of externally-bound variables and, if pruning is possible,
will return a substitution that will eliminate the disparity in loose forbidden variables. It also returns the

18

next fresh variable name to be used by the rest of the unification process. The most interesting clause in this
definition concerns redexes; the other cases serve to propagate the search for places where to apply pruning.
Finally, function propagPrune propagates the search for subterms to prune through the operand-list.

canPrune :: QTerm → [String]→ Maybe (Subst ,String)
-- look for a applicative term having shape X w1s z w2s

canPrune (q, λλvs e) bs = canPrune (q, e) (vs ++ bs)
canPrune (q, v • l) bs =

if v ∈ q∃
then -- most important clause

let isFreeForbIn [] = Nothing

isFreeForbIn pre (z : zs) =
if z ∈ q∀ ∧ ¬ (z ∈ bs) -- “z” is forbidden and not bound.
then Just (reverse pre, z , zs)
else isFreeForbIn (z : pre) zs

-- now search for an unbound forbidden variable in arguments to flexible “v”
w1s z w2s = isFreeForbIn [] l

in case w1s z w2s of

Nothing → Nothing

Just (w1s , z ,w2s)→
let v ′ = ♯v (q∃) -- generate fresh variable in “q” from “v”

sub = λλ(p(w1s ++ (z : w2s))q) (v ′ • (w1s ++ w2s))

in Just ([(v , sub
Exp

)], v ′) -- build part of pruning step; this is
-- the productive part of this function,
-- the rest is mostly searching.

else propagPrune q l bs -- propagate search to l
canPrune (q, e1 • e2s) bs =

let p1 = canPrune (q, e1) bs -- propagate the search
p2 = propagPrune q e2s bs

in case p1 of

Nothing → p2

ans → ans

canPrune (q, v) bs = Nothing -- there’s no flex variable at head

propagPrune q [] bs = Nothing -- propagate the search for stuff to prune
propagPrune q (x : xs) bs =

case (canPrune (q, x) bs) of

Nothing → propagPrune q xs bs

p → p

5.4.2 Auxiliary functions

The precise details of the following definitions are omitted since their implementations are straightforward.
In the interest of readability the notation used in this report conceals the constructors used in Exp and FAE

(see §2.1) for the formation of variables. Notwithstanding the absence of explicit markings, a distinction
must be drawn between variables as terms and their names. Taking xs to range over lists of variables, pxsq
will denote the list of names associated with each variable in xs – that is, it acts elementwise on xs to project
a variable’s name. Taking ns to range over lists of variable names, then ppnsqq denotes the list of variables
bearing those names. The symbol ⊆Λ will be used to denote the subterm relation, and the function ♯nsn
produces the variable name closest to n which is fresh relative to the elements in ns. Finally, ρfun denotes
the function produced from the graph ρ.

19

5.5 Main function

Function unify combines the behaviour of earlier definitions and iterates the unification algorithm until it
yields a solution or fails to find one.

unify :: UProblem → Maybe (QPrefix ,Subst)
unify p@(q, e) =

case (unify ′ (p ⇓)) of -- note: “normalise” compacts its result.
Nothing → Nothing

Just (p′, ρ)→
if p ≡ p′

then Just (fst p′, ρ)
else case (unify p′) of

Nothing → Nothing

Just (q ′, φ′)→ Just (q ′, (ρ # φ′) ↾ (q∃))

5.6 Examples

Some of the following examples are drawn from the article by Nipkow (1993). We will start with elementary
tests and proceed to test more of the functionality implemented above.

qpref = foldl (·+
∃
) empty [Y, X]

test1 = unify (qpref , [(X, Y)])
test1 ′ = unify (qpref , [(X • [], Y • [])])
test1 ′′ = unify (qpref , [(λλ[] X, λλ[] Y)])

The evaluation of test1, test1’, and test1” yields the same value:
Just (
Signatures : (none)
Flexibles : X ′

Forbiddens : (none)
, [(X,X ′), (Y,X ′)])

The pattern-checking function is tested next.
p1 = (q, (λλ[x] (F • [(λλ[z] (x • [z]))])))

where q = empty+
∃
F

p1short = (q, (λλ[x] (F • [x])))

where q = empty+
∃
F

np4 = (q, (λλ[x] (G • [H]))) -- not a pattern

where q = (foldl) ·+
∃

empty [G, H]

p3 = (q, (λλ[x] (c • [x])))

where q = empty+
L c

np5 = (q, (λλ[x] (c • [Z]))) -- not a pattern

where q = empty+
L c

p4 = (q, (λλ[x, y] (F • [x, y])))

where q = empty+
∃
F

np1 = (q, (F • [c]))

where q = (empty+
∃
F)+L c

np2 = (q, (λλ[x] (F • [x, x])))

where q = empty+
∃
F

20

np3 = (q, (λλ[x] (F • [(F • [x])])))

where q = empty+
∃
F

The previous definitions whose names do not begin in np are patterns. More interesting behaviour is tested
next. Definition pr1 is not a pattern unification problem, and as a result the algorithm misbehaves since it
was not presented with valid input.

pr1 = (q, [(snd p1 , snd np4)]) -- this is NOT a pattern unification problem

where q = foldl (·+
∃

) empty [F, G, H]
The next attempts are all successful and test different parts of the algorithm.

pr2 = ((q, [(λλ[x, y] (F • [x]), λλ[x, y] (c • [G • [y, x]]))]) :: UProblem) † -- flex-rigid

where q = (foldl (·+
∃
) empty [F, G])+L c

unify pr2

 Just (
Signatures : c
Flexibles : G ′ and F

Forbiddens : a′′′ and a′

, [(G, λλa′′′ (λλa′ (G′ • a′)))])

pr3 = ((q, [(λλ[x, y] (F • [x]), λλ[x, y] (G • [y, x]))]) :: UProblem) † -- flex-flex

where q = foldl (·+
∃

) empty [F, G]
unify pr3

 Just (
Signatures : (none)
Flexibles : F ′

Forbiddens : a′′′ and a′

, [(F, λλa′ (F′ • a′)), (G, λλa′′′ (λλa′ (F′ • a′)))])

pr4 = (q, [(x, X • [x])]) † ::UProblem

where q = (empty+
∃
X)+

∀
x

unify pr4

 Just (
Signatures : (none)
Flexibles : (none)
Forbiddens : x
, [(X, λλx x)])

Notes

In §5.3 the combinator foldR was used; curiously an equivalent of this general combinator could not be found
in the standard libraries.

21

Chapter 6

Proof system

An automatic theorem prover can now be built by combining the components from earlier chapters.

6.1 Supporting definitions

The language of formulas will be described next and shown to be term-like. As in the previous chapter,
formulas will then be paired with a ∀∗∃∗∀∗ quantifier prefix to to yield Q-formulas. The theorem prover
works over a fragment of Q-formulas formed by clause and goal Q-formulas; this fragment is characterised
in §6.1.2.

data Formula

= Formula −→ Formula -- implication
| ∀[String] Formula -- univ.quantification
| String〈[FAE]〉 -- predicate

instance Term Formula where

FV (〈f 〉) =
⋃

FV
−→
f

FV (∀xs f) = (FV f) \\ xs

FV (f1 −→ f2) = (FV f1) ++ (FV f2)

BV (〈f 〉) =
⋃

BV
−→
f

BV (∀xs f) = (BV f) ++ xs

BV (f1 −→ f2) = (BV f1) ++ (BV f2)

(n〈f 〉) † = n〈(·†)
−→
f 〉

(∀xs f) † = ∀xs (f †)
(f1 −→ f2) † = (f1 †) −→ (f2 †)

(n〈f 〉) ‡ = n〈(·‡)
−→
f 〉

(∀xs f) ‡ = ∀xs (f ‡)
(f1 −→ f2) ‡ = (f1 ‡) −→ (f2 ‡)

(n〈f 〉) ⇓ = n〈(· ⇓)
−→
f 〉

(∀xs f) ⇓ = ∀xs (f ⇓)
(f1 −→ f2) ⇓= (f1 ⇓) −→ (f2 ⇓)

type QFormula = (QPrefix ,Formula)
The theorem prover will operate on sequents, which will be defined next. The antecedent formulas in

a sequent are accompanied by a name and a number: the name serves to identify the assumption variable
associated with the assumed formula, and the number is the multiplicity of the assumption – the maximum

22

number of times the assumption may be used – and serves to control the complexity of resulting proofs.
The type of sequents are instantiated in the class of terms as shown below.

data Sequent = [(String,Formula, Int)] =⇒ Formula

instance Term Sequent where

FV (p =⇒ f) = let pForms = (λ(, y,)→ y) −→p

in nub ((
⋃

FV
−−−−−→
pForms) ++ FV f)

BV (p =⇒ f) = let pForms = (λ(, y,)→ y) −→p

in nub ((
⋃

BV
−−−−−→
pForms) ++ BV f)

(p =⇒ f) † = (mapTriple2 (·†) p) =⇒ (f †)

(p =⇒ f) ‡ = (mapTriple2 (·‡) p) =⇒ (f ‡)

(p =⇒ f) ⇓ = (mapTriple2 (· ⇓) p) =⇒ (f ⇓)
If a formula in this fragment is provable, the theorem prover will return a proof witnessing this fact as a
term.

type Proof = Exp

6.1.1 Lifting combinators

In the previous chapter, FAE was favoured over Exp as a representation for λ-terms. In this chapter both
will be used, albeit in different scopes: Exp is used to represent proofs, and FAE is more wieldy to represent
arguments to predicates. The function liftExpForm lifts functions over terms – in Exp notation – to be
propagated to terms within formulas. This is used, for example, to lift substitutions on terms to operate on
terms within formulas. Similarly, liftFrmtoSeq lifts functions defined over formulas to operate on sequents.

6.1.2 Syntactic checks

The definitions in this section characterise clause and goal Q-formulas, and Q-sequents. An informal de-
scription will be given in place of precise definitions here, which are adapted from Schwichtenberg (2004).

• If ~r are Q-terms then P~r is both a Q-clause and Q-goal.

• If D is a Q-clause and G a Q-goal, then D −→ G is a Q-goal.

• If G is a Q-goal and D a Q-clause, then G −→ D is a Q-clause.

• If G is a Q+
∀
x-goal, then ∀xG is a Q-goal.

• If D{y 7→ Y •Q∀} is a Q+
∃
Y -clause then ∀yD is a Q-goal.

6.1.3 Harrop normal form

For the purposes of resolution it is useful to represent antecedent formulas as ∀~x.~f −→ g, called an elab-

list in the Minlog implementation and Harrop normal form (HNF) in Isabelle (Berghofer 2003, §2.3.1).
This representation induces a structural uniformity in formulas, as a result of which checking whether the
formula’s head (conclusion) and the sequent’s conclusion are resolvable. If the conclusions can be resolved

then ~f are added as subgoals to the proof process. Formulas in HNF are formalised as values of the type
Reformula below. The functions reformulate and unreformulate are defined to handle conversions of formulas
to and from values of Reformula respectively; their definitions are straightforward and are omitted here.

type Reformula = ([String], [Formula],Formula)

23

6.2 Theorem prover

The proof system consists of two inference rules: strip and resolve. The proving machinery applies these
automatically by iterating a process that checks the shape of the formula then applies one of these two rules,
and fails if the inference step fails. Function prove accepts a Q-sequent and if the search is successful it
returns the final Q-sequent, a proof and the overall substitution function computed.

prove :: Int → QSequent → IO (Maybe (QPrefix ,Subst ,Proof ,Sequent))
prove cnt (q, s) = do

putStr (=== Step ++ (show cnt) ++ \n Goal : ++ (show s) ++ \n)
case s of

p =⇒ ∀xs f →
case (strip cnt (q, s)) of

Nothing → do

putStr (Failed to strip variable(s).\n)
return Nothing

Just (q ′, s ′, pf , ρ)→ do

putStr (Stripped variable(s).\n)
continuance ← prove (cnt + 1) (q ′, s ′)
case continuance of -- do rest of the proof

Nothing → do

putStr (Failed step ++ (show cnt) ++ .\n)
return Nothing

Just (q2 , φ′, pf rest , s ′′)→
let

φ = (ρ # φ′) ↾ (q ′
∃)

goal = appSubstSequ φ s ′′

in do

putStr (Completed step ++ (show cnt) ++ .\n)

return $ Just (q2 , φ, φ
fun

((pf pf rest)
FAE

)
Exp

, goal)
p =⇒ (f −→ f ′)→

case (strip cnt (q, s)) of

Nothing → do

putStr (Failed to strip implication.\n)
return Nothing

Just (q ′, s ′, pf , ρ)→ do

putStr (Stripped implication.\n)
continuance ← prove (cnt + 1) (q ′, s ′)
case continuance of -- do rest of the proof

Nothing → do

putStr (Failed step ++ (show cnt) ++ .\n)
return Nothing

Just (q2 , φ′, pf rest , s ′′)→
let

φ = (ρ # φ′) ↾ (q ′
∃)

goal = appSubstSequ φ s ′′

in do

putStr (Completed step ++ (show cnt) ++ .\n)

return $ Just (q2 , φ, φ
fun

((pf pf rest)
FAE

)
Exp

, goal)

24

p =⇒ n〈ts〉 →
case (resolve cnt (q, s)) of

[]→ do

putStr (Failed to resolve.\n)
return Nothing

list →
let

ploop [] = return [] -- iterate through possible paths until reach one that leads to the proof.
ploop (x@(q, ss , pf , ,) : xs) =

let

loop [] = return [] -- no subgoals
loop (x : xs) q = do

continuance ← prove (cnt + 1) (q, x)
case continuance of -- do rest of the proof

Nothing →
return [Nothing] -- abort the proof attempt, disregard other subgoals.

ans@(Just (q ′, ρ, pf ′,))→
let

xs ′ = (appSubstSequ ρ) −→xs
in if xs ≡ []

then return [ans]
else do

rest ← loop xs ′ q ′

return (ans : rest)
theRest y = if ¬ (Nothing ∈ y)

then return [(x , y)] -- don’t attempt the other paths,
-- return the first that succeeds.

else ploop xs

in do

thisGoal ← loop ss q

theRest thisGoal

attempt = ploop list

in do

putStr (Resolvable with ++ (andList ((λ(, , , , u)→ u)
−→
list)) ++ \n)

-- try each resolvant in turn, until we reach one for which all subgoals are provable.
attemptResult ← attempt

case attemptResult of

[]→ do

putStr (Failed step ++ (show cnt) ++ .\n)
return Nothing -- none of the proof attempts succeeded.
→
let

focus = head attemptResult

(q, ss , pf , subs,) = fst focus -- original goal information

answer x =
let

result = catMaybes x -- focus on first successul attempt
in

25

if (result ≡ [])
then

if (ss 6≡ [])
then error Goal mismatch!\n
else -- apply preproof to empty subproof list

Just (q, subs , pf [], appSubstSequ subs s)
else

let

finalStep = last result

-- finalStep contains the final state and final substitution
-- that we’re to use. Now concentrate on building proof term.

(q ′, φ′, , p′ =⇒) = finalStep

proofs = (λ(, , pf i ,)→ pf i)
−−−→
result -- project out the list of proofs

φ = subs ↾ (q ′
∃) # φ′

in Just (q ′, φ, (φ
fun

((pf proofs)
FAE

))
Exp

, appSubstSequ φ (p′ =⇒ (n〈ts〉)))

in do

putStr (Completed step ++ (show cnt) ++ .\n)
return (answer (snd focus))

6.2.1 Strip

The rule strip fuses the introduction rules for quantification and implication and could be illustrated as
shown below. The inference forms part of a proof tree that is rooted at the top. Preceding the inference is
its context on the left of the bar, and following the inference is the new context on the left of the bar and
the proof sought on the right. Note that the line following the inference is only valid if the rest of proof
is possible – so in this sense this illustration is unlike standard descriptions of inference rules. The rest of
the proof process serves to define the proof term M and the substitution φ′. The symbol φ abbreviates
(ρ # φ′) ↾ Q∃; additional symbols are explained in the column on the right of the rule.

Q, Λ |

∀~x. ~D −→ A

Aρ

Q+
∀
~y, Λλ~yλ~u

~Dφ | MAφ

The ~u are fresh assumption vari-
ables that are associated with ~D
ordinate-wise. The list ~y abbre-
viates ~xρ, where ρ is a renam-
ing that avoids shadowing in Λ,
which would lead to variable cap-
ture in M .

The rule above is automatically applied to whittle a goal while gradually building its proof term. The
rest of the proof process attempts to define M . The precise definition of the inference rule is presented next.

strip :: Int → (QPrefix ,Sequent)→ Maybe (QPrefix ,Sequent ,Exp → Proof ,Subst)
-- return new prefix, additional proof goals, a function to build proof (when the new proof goals have
-- been dischanged), and a substitution in case any bound variables need renaming.

strip cnt (q, p =⇒ f) =
case f of

∀xs f →
let

-- now ensure that xs is disjoint from all names in use so far
xs ′ =

let

26

namesSoFar =
let

assumpVars = (λ(x , ,)→ x) −→p
prefixVars = qL ++ q∃ ++ q∀

in assumpVars ++ prefixVars

in freshen xs namesSoFar

renaming =
let

ren1 = zip xs (·Exp −−−−−→(ppxs ′qq))
loop [] = []
loop (this@(x , y) : rest) =

if x ≡ y -- remove (x,Var x) substitutions
then loop rest

else this : (loop rest)
in loop ren1

-- forbid the variables

q ′ = foldl (·+
∀
) q xs ′

-- produce subgoal

in Just (q ′, (p =⇒ appSubstForm renaming f), λt → (λλxs ′ (t
FAE

))
Exp

, renaming)

f1 −→ f2 →
let

u ′ = -- come up with fresh name for this assumption
let

assumpVars = (λ(x , ,)→ x) −→p
in head $ freshen [u] assumpVars

p′ = -- check if f1’s already in “p”, if so then increment its availability otherwise add it.
case lookup f1 ((λ(x , y, z)→ (y, (x , z))) −→p) of

Nothing → (u ′, f1 , 2) : p
Just (u,n)→ replace (u, f1 ,n) (u, f1 ,n + 2) p

in Just (q, p′ =⇒ f2 , λt → λλu ′ t , [])

6.2.2 Resolve

The rule resolve fuses the elimination rules for quantification and implication. In the illustration below, prior
to the inference being made, a suitable assumption needs to be chosen to be resolved with the current proof
goal. Potentially, there might be more than one plausible candidates for u: in such a case the candidates
are tried in turn until a proof is found in depth-first-search fashion.

Q, Λ ∋ u∀~x. ~G−→P~s|
P~r

~G∗ρ

Q′, Λ(ρ#φ′)↾Q′

| u • ~x∗ρφ′ • ~M
~G∗ρφ′

The ~M are proofs of ~G∗ρφ′

ordinate-wise, and ~X are fresh
variables equinumerous to ~x.
The map ·∗ is xi 7→ Xi•Q∀. Cru-
cial to this inference step is the
result of unification
(Q′, ρ) := unify (Q+

∃
~X) (~r, ~s∗)

The subterm ~x∗ρφ′ is equivalent to ((~Xρφ′)•Q∀) and serves to eliminate ∀~x in u. The ~M then discharge

the assumptions ~G in u.

27

resolve :: Int → (QPrefix ,Sequent)→ [(QPrefix , [Sequent], [Exp]→ Proof ,Subst,String)]
-- Last component of function’s result is the assumption variable of the formula resolved with.

resolve cnt (q, p =⇒ n〈rs〉) =
let

resolvants = tryMatching (q, p =⇒ n〈rs〉)
loop [] = []
loop ((f , f ′@(xs, gs , c), p′, (q ′, ρ), allElims) : rest) =

(q ′, ss ′, proof , ρ, u) : (loop rest)
where

u = let

a′s = (λ(x , y,)→ (y, x))
−→
p′

in

case lookup f a′s of

Just identifier → identifier

Nothing → -- This should never be the case.
error (Could not find assumption ++ (show f ′) ++ \nin ++ (show a′s) ++ \n)

ss ′ = (appSubstSequ ρ)
−−−−−−−−−−−−−−−→
((λg → p′ =⇒ g) −→gs) -- new subgoals

proof = -- feed it subgoals’ proofs to obtain proof of original goal.

λx → ((u • allElims) • (·FAE −→x))
Exp

in loop resolvants

Finding resolvants

The function tryMatching sifts the antecedents in a sequent and returns a list of resolvable candidates. This
process is organised into two stages:

1. Antecedents which do not conclude with the goal predicate are filtered off;

2. The goal’s arguments and those of the antecedent’s conclusion are unified. If this succeeds then the
outcome is retained, otherwise the resolution candidate is dropped.

In effect this function returns a list of possible paths to follow in search of the proof. These are tried
in turn; when all the sub-paths leading from a path do not lead to a proof then the system chronologically
backtracks and searches along the next path.

tryMatching :: (QPrefix ,Sequent)→ [(Formula,Reformula, [(String ,Formula, Int)], (QPrefix ,Subst), [FAE])]
tryMatching (q, p =⇒ n〈rs〉) =

let

loop [] = []
loop ((u, f , cnt) : xs) =

if cnt > 0 -- heed multiplicity of use of assumption
then

let f ′@(vars , ante, conc) = reformulate f

in case conc of

(m〈ts ′〉)→
if (n ≡ m) ∧ (length rs) ≡ (length ts ′)
then

let

p′ = -- decrement availability of this assumption
replace (u, f , cnt) (u, f , cnt − 1) p

in

28

(f , f ′, p′, (q, (rs , ts ′))) : (loop xs)
else loop xs

→ loop xs

else loop xs

filter1 = loop p -- first round of checks

prop =
-- this definition shows there is lots of processing to do before calling unify

λ(f , f ′@(xs, fs , c), ante, p@(q, (rs , ts)))→
let

namesSoFar =
let

assumpVars = (λ(x , ,)→ x)
−−→
ante

prefixVars = qL ++ q∃ ++ q∀
in assumpVars ++ prefixVars

xs ′ = freshen xs namesSoFar

renaming =
let ren1 = zip xs xs ′

loop [] = []
loop ((x , y) : rest) =

if x ≡ y -- remove (x,Var x) substitutions
then loop rest

else (x , y) : (loop rest)
in loop ren1

fs ′ = (appSubstForm renaming)
−→
fs

c′ = appSubstForm renaming c

-- up to now have ensured that variable names occurring resolvant and in
-- current goal are disjoint. The unification problem is prepared next;
-- now we must synch “ts” by applying the renaming defined previously.

ts ′ = renaming
fun −→

ts

namesSoFar ′ = namesSoFar ++ xs ′

-- and now for the processing prescribed in the paper.
zs = pp(q∀)qq

xS = freshen ((toUpper −→·)
−→
xs ′) namesSoFar ′ -- fresh names for raised variables

qStar = foldl (·+
∃
) q xS

valueTerms = (λx ′ → (x ′ • zs))
−→
xS -- value terms of the mapping defined next

star = (λ(x , x ′)→ (x , x ′
Exp

))
−−−−−−−−−−−−−−−→
(zip xs ′ valueTerms)

tsStar = star
fun −→

ts ′

gStar = (appSubstForm star)
−→
fs ′

c′′ = appSubstForm star c′

unifProb = zip ((·†) −→rs) ((·†)
−−−−→
tsStar)

p′ = unify (qStar , unifProb) -- try to solve the unification problem built until now.
in case p′ of

Nothing → Nothing

Just (q ′, ρ)→
let

29

f ′ = reformulate (appSubstForm ρ (unreformulate (xs ′, gStar , c′′)))
allElims = -- this is used in building the proof term, in elimination of forall

(renaming # ρ)
fun −−−−−−−−→

valueTerms

in Just (f , f ′, ante, (q ′, renaming ++ ρ), allElims)

filter2 = catMaybes (prop
−−−−→
filter1)

in filter2

6.3 Auxilliary functions

The combinators appSubstForm and appSubstSequ are defined to apply substitutions to formulas and se-
quents respectively. The function freshen ensures that two lists of names are disjoint by replacing common
names in the second list with fresh names. The precise implementation details are omitted here.

6.4 Main function

The key function in this implementation is search and it starts the proof process after being provided with
an initial quantifier prefix (usually empty) and a formula. Examples of output produced are provided in
Appendix A.

The theorem prover produces output in two stages:

1. During the proof search process the prover reports each inference step it makes, the goal it is tackling,
and whether the inference is successful. This trace serves to explain how a proof was obtained, or why
none was found.

2. If a proof has been found then the prover outputs both contexts – i.e., assumption and quantifier prefix
contexts – and the proof term.

30

Chapter 7

Conclusion

The small bits of machinery described in each chapter were combined to form the theorem prover, of
which some example runs are documented in Appendix A. The laminar organisation of the implementation
emphasises the interaction between components, and also renders them individually reusable. Using Haskell
as the implementation language has paid off primarily in the clarity of the implementation. This fulfilled
the intention to follow Schwichtenberg’s specification closely, even in its presentation.

The implementation’s efficiency has not yet been guaged, nor has it been proved correct; these are
suggested as future work. Transforming between expression representations is sure to hinder performance,
so committing to a single representation is suggested as an improvement. The presentation suffers from the
bureaucratic details describing the handling of variables and ensuring the generation of fresh ones. Although
of small interest, these details are crucial to ensure correctness; a more elegant solution to this would be
desirable.

This is the second implementation of the algorithm described in Schwichtenberg (2004), as the first
implementation was done in Scheme and forms part of Minlog. Minlog’s implementation is more stringent
since it allows the user to state types for object variables; it associates arities with predicates; and it also
checks whether a unification problem is a pattern unification problem, and whether a formula is a goal or a
clause formula. These checks formalise the side-conditions on which the algorithm’s correctness is predicated
on. However, in the event of invalid input it is more likely to get unification failure rather than an unsound
result, by the implementation of the unification algorithm.

This work can be extended in the following ways to match the implementation in Minlog. By imple-
menting the checks mentioned above the proof process can reject invalid input early – this would require
modifying the context’s definition to associate types with object variables – or, for valid formulas, switch
to using Huet’s unification algorithm when it encounters non-patterns. Furthermore, the logic could be ex-
tended to support conjunction and the strong existential quantifier, as explained by Schwichtenberg (2004).

Schwichtenberg suggested modifying the algorithm to produce proofs devoid of loose variables. In Minlog,
canonical type inhabitants are identified upon defining a type, and these are referred to in manual proofs –
appearing in the place of flexible variables in automatically-found proofs. Other extensions include extending
the configurability of the prover – regarding trace output and setting multiplicity – and interfacing it with
other systems.

Acknowledgements

I thank Prof. Schwichtenberg for his guidance during my stay at LMU. I have also benefited from feedback
during two seminars on this subject given last April. The talk given by Andreas Abel on the use of monads
in logic implementations was instructive. My stay in Munich was made possible through a Marie Curie
fellowship under the auspices of the MATHLOGAPS programme, which I gratefully acknowledge.

31

Appendix A

Examples

The definitions that follow encode some useful abbreviations. Following these are examples of the theorem
prover’s use.

A.1 Definitions

The symbol ⊥ is defined to be the predicate reserved to denote logical falsity. The symbols ∃cl and stab

denote the classical existence and stability schemes respectively.
⊥ = bottom〈[]〉

∃clxs f = (∀xs (f −→ ⊥)) −→ ⊥

stab pred xs = ∀xs (((pred xs −→ ⊥) −→ ⊥) −→ pred xs)

A.2 Example 1

The first example is a minimally-valid classical statement.
example1 =

search empty ((∀[x] (Q〈[x]〉) −→ (∃cl[x] (Q〈[x]〉))))
The output produced by the algorithm follows:

===Step 0

Goal:

:- (all x. Q x) -> (all x. Q x -> bottom) -> bottom

Stripped implication.

===Step 1

Goal:

u : (all x. Q x)

:- (all x. Q x -> bottom) -> bottom

Stripped implication.

===Step 2

Goal:

u’ : (all x. Q x -> bottom)

u : (all x. Q x)

:- bottom

Resolvable with u’

===Step 3

32

Goal:

u’ : (all x. Q x -> bottom)

u : (all x. Q x)

:- Q X

Resolvable with u

Completed step 3.

Completed step 2.

Completed step 1.

Completed step 0.

====] Proved [===================

Final sequent was:

u’ : (all x. Q x -> bottom)

u : (all x. Q x)

:- bottom

Final context was:

Signatures : (none)

Flexibles : X’’

Forbiddens : (none)

Proof : \u\u’((u’ X’’) (u X’’))

A.3 Example 2

Two slightly different formulas are tested in this example: one is not provable while the other is.
example2a =

search empty (f1 −→ f2 −→ (Q〈[]〉))
where

f1 = ∀[y] ((∀[z] (R〈[y, z]〉)) −→ Q〈[]〉)
f2 = ∀[y1] (R〈[y1, y1]〉)

example2b =
search empty (f1 −→ f2 −→ (Q〈[]〉))
where

f1 = ∀[y] ((∀[z] (R〈[y, z]〉)) −→ Q〈[]〉)
f2 = ∀[y1, y2] (R〈[y1, y2]〉)

The output from Example 2A follows:

===Step 0

Goal:

:- (all y. (all z. R y z) -> Q) -> (all y1. R y1 y1) -> Q

Stripped implication.

===Step 1

Goal:

u : (all y. (all z. R y z) -> Q)

:- (all y1. R y1 y1) -> Q

Stripped implication.

===Step 2

Goal:

u’ : (all y1. R y1 y1)

33

u : (all y. (all z. R y z) -> Q)

:- Q

Resolvable with u

===Step 3

Goal:

u’ : (all y1. R y1 y1)

u : (all y. (all z. R y z) -> Q)

:- (all z. R Y z)

Stripped variable(s).

===Step 4

Goal:

u’ : (all y1. R y1 y1)

u : (all y. (all z. R y z) -> Q)

:- R Y z

Failed to resolve.

Failed step 3.

Failed step 2.

Failed step 1.

Failed step 0.

Could not find a proof.

Example 2B leads to a positive result as shown next:

===Step 0

Goal:

:- (all y. (all z. R y z) -> Q) -> (all y1,y2. R y1 y2) -> Q

Stripped implication.

===Step 1

Goal:

u : (all y. (all z. R y z) -> Q)

:- (all y1,y2. R y1 y2) -> Q

Stripped implication.

===Step 2

Goal:

u’ : (all y1,y2. R y1 y2)

u : (all y. (all z. R y z) -> Q)

:- Q

Resolvable with u

===Step 3

Goal:

u’ : (all y1,y2. R y1 y2)

u : (all y. (all z. R y z) -> Q)

:- (all z. R Y z)

Stripped variable(s).

===Step 4

Goal:

u’ : (all y1,y2. R y1 y2)

u : (all y. (all z. R y z) -> Q)

:- R Y z

34

Resolvable with u’

Completed step 4.

Completed step 3.

Completed step 2.

Completed step 1.

Completed step 0.

====] Proved [===================

Final sequent was:

u’ : (all y1,y2. R y1 y2)

u : (all y. (all z. R y z) -> Q)

:- Q

Final context was:

Signatures : (none)

Flexibles : Y’

Forbiddens : z

Proof : \u\u’((u Y’) \z((u’ (\zY’ z)) (\zz z)))

A.4 Example 3

The “drinker’s problem” formula is proved next. This is not minimally-valid hence requires use of the
stability axiom. Informally the formula expresses that “there is a person such that when that person drinks
then everybody drinks”.

exampleD =

search empty ((stab drink [x]) −→ (∃cl[x] (drink [x] −→ (∀[y] (drink [y])))))
where

drink xs = Q〈ppxsqq〉
Unlike in the previous examples the proof involves backtracking, as can be seen in steps 11 and 13.

===Step 0

Goal:

:- (all x. Q x -> bottom -> bottom -> Q x) ->

(all x. Q x -> (all y. Q y) -> bottom) -> bottom

Stripped implication.

===Step 1

Goal:

u : (all x. Q x -> bottom -> bottom -> Q x)

:- (all x. Q x -> (all y. Q y) -> bottom) -> bottom

Stripped implication.

===Step 2

Goal:

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- bottom

Resolvable with u’

===Step 3

Goal:

u’ : (all x. Q x -> (all y. Q y) -> bottom)

35

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q X -> (all y. Q y)

Stripped implication.

===Step 4

Goal:

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- (all y. Q y)

Stripped variable(s).

===Step 5

Goal:

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y

Resolvable with u

===Step 6

Goal:

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y -> bottom -> bottom

Stripped implication.

===Step 7

Goal:

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- bottom

Resolvable with u’’’ and u’

===Step 8

Goal:

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y

Resolvable with u

===Step 9

Goal:

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y -> bottom -> bottom

Stripped implication.

===Step 10

Goal:

36

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- bottom

Resolvable with u’’’ and u’

===Step 11

Goal:

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y

Failed to resolve.

===Step 11

Goal:

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q X’ [y] -> (all y. Q y)

Stripped implication.

===Step 12

Goal:

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- (all y. Q y)

Stripped variable(s).

===Step 13

Goal:

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y’

Failed to resolve.

Failed step 12.

Failed step 11.

Failed step 10.

Failed step 9.

Failed step 8.

===Step 8

Goal:

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

37

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q X’ [y] -> (all y. Q y)

Stripped implication.

===Step 9

Goal:

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- (all y. Q y)

Stripped variable(s).

===Step 10

Goal:

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y’

Resolvable with u

===Step 11

Goal:

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y’ -> bottom -> bottom

Stripped implication.

===Step 12

Goal:

u’’’’’ : Q y’ -> bottom

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- bottom

Resolvable with u’’’’’ and u’’’

===Step 13

Goal:

u’’’’’ : Q y’ -> bottom

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y’

Failed to resolve.

38

===Step 13

Goal:

u’’’’’ : Q y’ -> bottom

u’’’’ : Q X’ [y]

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- Q y

Resolvable with u’’’’

Completed step 13.

Completed step 12.

Completed step 11.

Completed step 10.

Completed step 9.

Completed step 8.

Completed step 7.

Completed step 6.

Completed step 5.

Completed step 4.

Completed step 3.

Completed step 2.

Completed step 1.

Completed step 0.

====] Proved [===================

Final sequent was:

u’’’’’ : Q y’ -> bottom

u’’’’ : Q y

u’’’ : Q y -> bottom

u’’ : Q X

u’ : (all x. Q x -> (all y. Q y) -> bottom)

u : (all x. Q x -> bottom -> bottom -> Q x)

:- bottom

Final context was:

Signatures : (none)

Flexibles : X

Forbiddens : y’ and y

Proof : \u\u’((u’ X) \u’’\y((u (\yy y)) \u’’’((u’ (\yy y))

\u’’’’\y’((u ((\y’\yy’ y’) y)) \u’’’’’(u’’’ u’’’’)))))

39

Appendix B

Supporting functions

This section collects general functions used in the implementation. The function mapp accepts two lists of
values and builds a function that maps between the two coordinate-wise.

mapp :: Eq a ⇒ [a]→ [b]→ a → b

mapp [] = mapp [] []
mapp [] = mapp [] []
mapp (x : xs) (y : ys) =

λz → if z ≡ x

then y

else mapp xs ys z

The function countUp builds a list of n numbered elements.

countUp :: Integer → [Integer]
countUp 0 = []
countUp 1 = [0]
countUp n = (n ′ : (countUp n ′))

where n ′ = n − 1

Function swap is used to reorient unification problems.

swap :: (a, b)→ (b, a)
swap (x , y) = (y, x)

Combinator foldR is a more general form of foldr, since the step function is passed the rest of the list.

foldR :: (a → [a]→ b → b)→ b → [a]→ b

foldR b [] = b

foldR f b (x : xs) = f x xs (foldR f b xs)

Boolean function distinct checks that the elements of a list are pairwise distinct.

distinct l = foldR (λx → λxs → λnext → (x /∈ xs) ∧ next) True l

40

The following function encodes the standard definition of restriction.

↾ [] = []
[] ↾ = []
((v , e) : es) ↾ vs =

if v ∈ vs

then ((v , e) : (es ↾ vs)) -- keep
else (es ↾ vs) -- drop

The trampoline function genTrampoline is used to manage iteration of functions.

genTrampoline p f x = p $ iterate f x

Pointwise intersection of two lists is defined next.

[] ⋓ = []
⋓ [] = []

(x : xs) ⋓ (y : ys) =
if x ≡ y

then (x : (intersectPT xs ys))
else (intersectPT xs ys)

The next definition adapts the map function to a list of pairs of the same type.

mapPair f l = zip l1 l2

where l ′ = unzip l

l1 = f
−−−−→
(fst l ′)

l2 = f
−−−−−→
(snd l ′)

The following definition abbreviates mapping a function to the second component in a triple.

mapTriple2 f l = (λ(x , y, z)→ (x , f y, z))
−→
l

The replace function over lists has the obvious definition.

replace :: Eq a ⇒ a → a → [a]→ [a]
replace x y [] = []
replace x y (z : zs) =

let rest = replace x y zs

in if x ≡ z

then (y : rest)
else (z : rest)

41

Bibliography

Berger, U. & Schwichtenberg, H. (1991), An inverse of the evaluation functional for typed λ–calculus, in

R. Vemuri, ed., ‘Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science’, IEEE
Computer Society Press, Los Alamitos, pp. 203–211.

Berghofer, S. (2003), Proofs, Programs and Executable Specifications in Higher Order Logic, PhD thesis,
Institut für Informatik, Technische Universität München.

Jones, S. (2003), Haskell 98 Language and Libraries: The Revised Report, Cambridge University Press.

Miller, D. (1991), ‘A Logic Programming Language with Lambda-Abstraction, Function Variables, and
Simple Unification’, Journal of Logic and Computation 1(4), 497–536.

Nipkow, T. (1993), ‘Functional Unification of Higher-Order Patterns’, Logic in Computer Science pp. 64–74.

Schwichtenberg, H. (2004), Proof Search in Minimal Logic, in ‘Artificial Intelligence and Symbolic Compu-
tation’, Vol. 3249/2004 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 15–25.

Wand, M. (1987), ‘A Simple Algorithm and Proof for Type Inference’, Fundamenta Infomaticae 10, 115–122.

42

Index

QL, 15
Q+

Lx, 15
Q−

Lx, 15
Q∃, 15
Q+

∃
x, 15

Q−

∃
x, 15

Q∀, 15
Q+

∀
x, 15

Q−

∀
x, 15

⋓, 41
Γ, 8
↓xt e, 13
#, 7
JExpKCtxt, 13
ρfun, 19
↾, 41
♯x, 13
♯nsn, 19
⊆Λ, 19
τ{i 7→ τ2}, 11
τ , 8
⇒, 8
O, 8

τ ′, 8
◦
⇒, 8
◦
n, 8

pxsq, 19
ppnsqq, 19
↑xt e, 13
r{x 7→ s}, 6
Eqns, 16
Exp, 4
•, 4
λλ, 4
x, 4

FAE, 4
•, 4
λλ, 4
x, 4

Formula, 22

P 〈FAE〉, 22
∀, 22
−→, 22

Goal, 9
Proof, 23
QFormula, 22
QPrefix, 15
QSequent, 23
QTerm, 15
Reformula, 23
Sem, 12

APPLY, 12
FREE, 12
LAM, 12
SYN, 12

Sequent, 23
=⇒, 23

Subst, 6
Subs, 9
TEqn, 8
TVariable, 8
Term, 5

Exp, 5
FAE, 5
Formula, 22
QTerm, 15
Sequent, 23
UProblem, 17

UProblem, 16
actionTable, 9
add ctx, 13
appSubstForm, 30
appSubstSequ, 30
boundVars, 5
canPrune, 19
compact1, 5
compact, 5
countUp, 40
distinct, 40
doSubst, 7
dropExtra, 7

43

empty ctx, 13
foUnifn, 10
foldR, 40
freeVars, 5
freshen, 30
genTrampoline, 41
isClosed, 5
isPattern, 16
leastInstance, 11
liftExpForm, 23
liftFrmtoSeq, 23
lookup ctx, 13
mapPair, 41
mapTriple2, 41
mapp, 40
mkSubst, 6
nbe, 14
normalise, 5
occursCheck, 10
propagPrune, 19
prove, 24
reformulate, 23
remSelfMap, 7
replace, 41
resolve, 27
shouldPrune, 18
skeleton, 9
strip, 26
swap, 40
toCommonNotation, 6
toFunctorArguments, 6
tryMatching, 28
undefInit, 9
unreformulate, 23
normalisNbE , 14
search , 30
typeOf , 11
unify , 20

44

	Introduction
	Running the proof system
	Notation

	Terms
	Representation
	Class of terms
	Instantiations

	Translation
	Substitution
	Notes

	Types
	Type definitions
	Constraint generation
	Constraint solution
	Auxilliary functions

	Main function
	Examples

	Normalisation by Evaluation
	Semantic values
	Evaluation function
	Context

	Reflect and Reify
	Main function
	Examples
	Notes

	Pattern unification
	Quantifier prefix
	Q-Terms
	Patterns
	Pattern unification
	Pruning
	Auxiliary functions

	Main function
	Examples
	Notes

	Proof system
	Supporting definitions
	Lifting combinators
	Syntactic checks
	Harrop normal form

	Theorem prover
	Strip
	Resolve

	Auxilliary functions
	Main function

	Conclusion
	Acknowledgements
	Examples
	Definitions
	Example 1
	Example 2
	Example 3

	Supporting functions
	Bibliography
	Index

