
Tips on Haskell

Nik Sultana∗

Mathematical Institute
University of Munich

August 17, 2008

1 Introduction

This guide seeks to emulate the style used in Tofte’s
summary [6] of Standard ML. It seeks to outline some
essential pieces of syntax one needs to know in order
to use Haskell, and loosely describes their semantics.

The coarse nature of this guide makes it bet-
ter suited for readers familiar with the functional
paradigm who want a quick outline of the language,
or who want to do a rapid revision of Haskell syntax.
Thompson’s book [5] on Haskell is recommended for
more expansive coverage, including methods of proof
for Haskell programs.

2 Practical matters

The latest version of the Haskell language is Haskell 98
and its last minor revision was made in 2003 [3]. This
language has been implemented by various groups to
produce compilers and interpreters. At present GHC1

is the most widely-used compiler for Haskell. It also
implements a host of extensions to Haskell which,
although some of them are experimental, often serve
to express clearer programs.

When one is getting to grips with a language an
interpreter can be more useful than a compiler. GHC
is distributed with an interpreter called GHCi. The
interpreter Hugs2 is also quite popular. Both GHC
and Hugs can be run on various platforms. The code
presented in this guide has been checked using GHCi
version 6.4.1.

∗nik.sultana@yahoo.com
1http://www.haskell.org/ghc
2http://www.haskell.org/hugs

Contents

1 Introduction 1

2 Practical matters 1
2.1 Command line matters 2

3 Functional paradigm 2

4 Semantics 2

5 Comments 2

6 Prelude 2

7 Definitions 2

8 Types 3

9 Functions 4
9.1 Functionals 4

10 Parametric polymorphism 4

11 Lists 5

12 Algebraic types 5
12.1 Impact of laziness 5

13 ‘Ad hoc’ polymorphism 6
13.1 Readable and Showable values 7

14 Modules 7
14.1 Abstract Datatypes 7

15 Monads 7
15.1 I/O . 8
15.2 State . 9

16 Practical techniques 10
16.1 Q’n’D . 10
16.2 QuickCheck 10

1

http://www.haskell.org/ghc
http://www.haskell.org/hugs

2.1 Command line matters

Haskell source files can be recognised from their “.hs”
extension.

The interpreters can be started by typing hugs or

ghci ; these may optionally be followed by the name
of the Haskell file to be loaded. Typing :? in the
top-level will describe directives recognised by the
interpreter. The behaviour of either interpreter can
be tuned by means of switches at the command line,
but only “standard” operation will be needed in the
examples that follow.

In order to compile a source file, say
Source.hs, into an executable named go use
ghc -c Source.hs -o go . Multiple source files

may be provided. Typing ghc --help provides
further details on how the compiler’s behaviour can
be controlled.

3 Functional paradigm

This section is intended to reinforce the mode of think-
ing underlying functional programming. This will be
approached using a comparison with imperative pro-
gramming.

Programming in the imperative style consists in
making explicit the sequence of steps needed to de-
rive output from input. Frequently in imperative pro-
grams one gets work done by explicitly directing the
computer to move values around memory and trans-
form the contents of memory locations.

In functional programming the relation between in-
put and output is described in a more direct manner:
rather than moving values around memory storage
and manipulating the contents of memory cells, the
values are manipulated directly. This sustains an ab-
straction: in functional programming one is describ-
ing mathematical objects rather than prescribing op-
erations to a machine. The following section will de-
scribe characteristics through which Haskell fulfils the
expectation that “the essence of functional program-
ming is expression evaluation” [4, p.3].

4 Semantics

Haskell is described as being a lazy and purely-
functional language. ‘Lazy’ means that expressions
are evaluated only if their values are needed, and
once evaluated their corresponding values are stored
to avoid recomputing them in the future. ‘Purely-
functional’ means that Haskell functions behave like
normal mathematical functions – that is, when ap-
plied to the same arguments they always evaluate to
the same value. This contrasts with an imperative

input command, for example, which may potentially
return a different result each time it is called. A way
of defining so-called “impure” functions in Haskell
will be described in §15.

Haskell is also a statically typed language: all values
pertain to types, and types are inferable at compile-
time.

5 Comments

Single-line comments are preceded by -- and extend
to the end of the line. Multiline comments are en-
closed between {- and -}.

6 Prelude

A kernel of oft-used definitions in Haskell are con-
tained in its so-called prelude. Other useful definitions
can be found in the standard libraries accompanying
Haskell. As with any other language, familiarity with
the prelude and libraries pays off in speed and ele-
gance in the programs one writes. Haskell program-
mers are also fortunate to have search engines for both
preludes and libraries. One of these engines is called
Hoogle3 and has been around for a few years. Search-
ing can be done using not only definition names but
also type signatures.

Some of the definitions given in this guide are avail-
able in the prelude or in some library, and need not
be redefined in practice. Standard definitions will
appear underlined in code fragments.

7 Definitions

This section concerns solely the definition of values (in-
cluding functions); other forms of definitions – such
as types and modules – will be described later.

Values in Haskell are named and defined in the
form of defining equations, taking the following form:

f x0..xn = expr

Here f is an identifier chosen to be the function’s
name, x0..xn is a (potentially empty) space-separated
sequence of identifiers that name its formal parame-
ters, and expr is an expression. The expression need
not directly follow the symbol = and may start on a
different line, as long as the the first symbol of expr is
below and to the right of the first symbol of f. This is
known as the offside rule.

3Accessible at http://www.haskell.org/hoogle/

2

http://www.haskell.org/hoogle/

The following simple examples are all legitimate
definitions:

five = 5

add x y = x + y

undef = undef

The last example shows the smallest recursive defini-
tion; defining equations in Haskell are in fact recursion
equations and Haskell’s semantics guarantee solutions
to these equations. The solution to the third equation
is a value that is undefined, usually denoted by the
symbol ⊥.

The construction of expressions will not be ad-
dressed directly through grammar definitions here,
but conveyed through examples. The first example
shows a conditional expression used to define the fac-
torial function – well-loved by functional program-
mers:

fact n = if n == 0

then 1

else n * (fact $ n - 1)

Note that the symbol = in Haskell is reserved for defi-
nitions, and that the equality test is denoted by the ==
symbol. The symbol $ denotes function application;
this is normally denoted by juxtaposition, but making
it explicit in this case saves on brackets.

Individual definitions may be given using multiple
equations to improve readability. For example, the
Fibonacci numbers are the solution of the recurrence
relation Fn = Fn−1+Fn−2 under seed values F0 = 0 and
F1 = 1. This may be expressed in Haskell as follows:

fib 0 = 0

fib 1 = 1

fib n = (fib $ n-1) + (fib $ n-2)

Instead of using multiple equations one could use
case expressions, demonstrated next.

fib n = case n of

0 -> 0

1 -> 1

n -> (fib $ n-1) + (fib $ n-2)

Alternatively one could structure definitions using
guards – a notation in which the conditions affecting
the behaviour of a function are given using Boolean
combinations:

fib n

| n==0 = 0

| n==1 = 1

| otherwise =

(fib $ n-1) + (fib $ n-2)

Guards make explicit the tacit Boolean tests that the
definition systems described previously perform: the
behaviour of the latter is predicated on pattern match-
ing which occurs at the equation or case level. Patterns
are syntactical objects which may contain identifiers.
If the input to a function matches the pattern, then free
identifiers within the pattern are bound in the expres-
sion that forms the function’s definition. So far we
have only seen patterns over variables ranging over
integers, but “structured”, or algebraic types, will en-
rich the language of patterns. This will be covered in
§12.

An expression may also contain local declarations
through use of where and let expressions. The fol-
lowing definition of doublehas the definition of twice
local to its scope: no other definition in the program
can “see” this definition.

double n = twice (+n) 0

where twice f = f . f

This definition also serves as an example of par-
tial application: the function + is applied to a single
argument thus yielding a new function that takes a
single argument (the remaining argument that was to
be given to +). Binary infix operators can be defined
by enclosing the operator’s symbol in round brack-
ets. The following definition duplicates the addition
operator:

(%%) x1 x2 = x1 + x2

Definitions may be complemented by a type signa-
ture; this goes a little way towards specifying the be-
haviour of the function being defined. The language
of type signatures will be described in the rest of this
guide, but for now it suffices to say that Integer is
the type of integers, Int is a limited-precision form of
the type Integer, and the binary -> forms the type of
functions.

nSign :: Integer -> Integer -> Integer

nSign n x =

let signum :: Integer -> Integer

signum 0 = 0

signum n = if n < 0

then -1

else 1

in n * (signum x)

The previous definition also serves as an example
of using let for local definitions.

8 Types

Before proceeding it would be useful to expand on
what has been said about types. Values can be ei-
ther observable in which case they are said to be of

3

ground type, or else they are non-observable due to be-
ing, or containing, general mathematical functions.
In Haskell practice, however, values of a type are ob-
servable if that type is shown to belong to a class of
“showable” types; this will be expanded further in
§13.1.

The grammar of types has basic (ground) types as
terminal symbols. Some examples of such types are
given below, together with examples of inhabitants of
that type. Note that these types are native to Haskell.

Type Values

Bool True, False
()4 ()

Integer . . .-1,0,1,. . .
Char ’’,’a’,’b’,. . .
String "","a","aa",. . .,"a","ab",. . .

The core mechanism for constructing other types
involves using function types, however other meth-
ods can be used to facilitate this. For instance, n-tuple
types can be defined explicitly as a tuple of types and
will have values drawn from the (lifted) Cartesian
product of those types. A general way of building
types will be described in §12.

Frequently-used composite types can be given a
name instead of being explicitly defined in each place
they are used. This involves defining a type synonym.
For example, the following defines a name to stand
for the product of Booleans and integers. Note that
type names must start with an uppercase alphabetical
symbol.

type BInt = (Bool, Integer)

Rather than define a synonym it might be preferable
to distinguish the new type from the composition of
its parts. This distinction will result in increased ab-
straction of the types being composed. This kind of
type definition is sketched below.

newtype T’ = Constr T

Note that Constr stands for a constructor: it can be
regarded as an n-ary function that maps values from
its argument-types into some value in the type being
defined. Note that a constructor is named using an
identifier that starts with an uppercase alphabetical
symbol.

Finally, type variables may appear in type signa-
tures in Haskell since a restricted form of polymor-
phism is allowed. Such variables are denoted by
identifiers consisting of lowercase alphabetical sym-
bols, conventionally starting with a. Parametric poly-
morphism in Haskell will be described further in §10.

4This symbol denotes Haskell’s unit type. Note that it also
denotes its sole inhabitant; any confusion is clarified by the context
in which the symbol occurs.

Type variables may also appear in the definition of
other types – usually indicating that the type being
defined is a container type. This will be described fur-
ther in §9.1, §11, and §12. For example, the type [a]
is the type of lists of type a – that is, any other type.

Haskell also supports overloading of functions, or
‘ad hoc’ polymorphism, through a mechanism called
type classes. The type signatures of overloaded func-
tions contain type variables which are restricted by
a context of a particular type class. This will be de-
scribed in §13.

9 Functions

Apart from named functions through definitions, one
can express anonymous functions using abstraction-like
notation from the λ-calculus. Let expr be an expres-
sion of type T, then \x-> expr is another expression
denoting a function of type T’ -> T. The type repre-
sented by T’ is inferrable.

Let definition f be of type T’ -> T’’ and g of type
T -> T’, then the composition of the two functions is
expressed using f . g and is typed T -> T’’.

A function having a single argument consisting of
an n-tuple can be turned into a function having n ar-
guments; this is called currying. The reverse direction
is also possible in general.

9.1 Functionals

Since functions are first-class citizens in Haskell’s
world they may be passed as arguments – and re-
turned as values. A functional is defined next, then
used to restate the factorial function defined in §7.

fixp :: (a -> a) -> a

fixp f = f (fixp f)

fact’ f n = if (n == 0)

then 1

else n * (f $ n - 1)

fact = fixp fact’

10 Parametric polymorphism

Some functions behave uniformly irrespective of the
type of values over which they are defined. A re-
stricted, though practically very useful, class of these
functions can be described directly within Haskell. A
very simple example of these functions is the identity
function, defined next.

4

id :: a -> a

id x = x

The type of the polymorphic functional map is de-
scribed next; its definition will be given in the next
section about the type of lists.

map :: (a -> b) -> [a] -> [b]

11 Lists

Lists have a special place in functional programming,
both historically and practically. They are container
types since they principally serve as structures that
can contain values of other types.

Lists consist of values constructed in two ways: us-
ing a nullary nil, denoted by []; alternatively using
a binary cons, denoted by infix :, of which first ar-
gument consists of a value and the second argument
consists of the remainder of the list – called head and
tail respectively. The following example shows two
examples of lists of type [Integer]; they encode the
same list and the second shows a more pleasant nota-
tion that could be used.

x = 5:3:1:[]

y = [5,3,1]

Lists can also be defined by using abbreviations for
arithmetic series as in the next two examples. The
third definition uses comprehensions.

• nats = [1..]

• odds = [1,3..]

• compound = [(x, y, x+y)

| (x,y) <- (zip nats odds)]

When defining functions over lists pattern match-
ing proves to be an invaluable tool. Furthermore,
since lists may be analysed and built without examin-
ing the values they contain, one often finds functions
defined over lists to be polymorphic. The next defini-
tion is an oft-quoted example.

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + (length xs)

The function map, the type signature of which was
given in the previous section, is defined next. Its
definition shows that given a function and a list, it
applies the function pointwise to the list.

map f [] = []

map f (x:xs) = (x’:rest)

where x’ = f x

rest = map f xs

12 Algebraic types

This provides a general mechanism for building new
types rather directly by describing their inhabitants.
Note that ⊥ tacitly inhabits every Haskell type. A
simple example of using this device involves defining
an enumerated type consisting of three elements as
shown next.

data Answer = Yes | No | Unknown

deriving (Eq,Show,Read)

The keyword deriving automatically instantiates
the type being defined in a restricted set of type classes
– such as those for values for which equality is decid-
able, and readable and showable values.

Type definitions may also be recursive, and may
themselves be parametrised by other types. The fol-
lowing example defines binary trees and is followed
by a polymorphic function over trees. Note that the
symbol _ in the definition of height is a dummy iden-
tifier used to discard values that would otherwise
have been bound to an identifier standing in place
of the _ symbol. The operator @, read as, serves to
name a pattern-matched input argument. In this ex-
ample inp is not used and serves only to demonstrate
use of the @ symbol. In Haskell any binary function
can be applied infix by enclosing it in backticks, as
with max in the definition of height.

data Tree a = Leaf

| Node a (Tree a) (Tree a)

height :: (Tree a) -> Int

height Leaf = 0

height inp@(Node _ t1 t2)

= 1 + height t1 ‘max‘ height t2

The datatype of trees can also be defined using
records defining projection functions from tree values.
The definition of height need not be changed to ac-
commodate the modification to Tree a shown below.

data Tree a = Leaf

| Node {val :: a, left :: Tree a,

right :: Tree a}

Often extensions to Haskell concern extensions to
its type system. These usually facilitate the encoding
of types which would otherwise be unwieldy to en-
code using algebraic types – and possibly impossible
to encode using algebraic types alone.

12.1 Impact of laziness

As a result of lazy evaluation one can encode infinite
and partially-defined objects in Haskell, knowing that

5

they will only be evaluated to the (hopefully finite)
extent required by the program.

• n3 = [1,2,3]

• ones = 1:ones

• aList = [1,2,3,undef]

where undef = undef

Each of the previous definitions inhabit the type
of lists of integers but the nature of each list is very
different from the others: the first list is a finite and
fully-defined; the second is an infinite list of 1’s; the
third is a finite but partially-defined list.

Returning to the example of Fibonacci numbers,
their definition will be turned into a list next. This
definition uses the definition fib given earlier in §7.
Note that nat defines the list of natural numbers, and
fibs applies fib to nat pointwise.

nat = 0:(map (+1) nat)

fibs = map fib nat

In order to project the nth element from a list the
infix operator !! is used. It would not be difficult
to prove that, for any n, fib n evaluates to the same
value as fibs!!n.

The Haskell definitions of Fibonacci numbers given
so far are inefficient since their evaluation involves re-
computing previously-computed values: they closely
follow the specification of the sequence in §7 too
closely. Recomputation can be spared by storing over-
lapping values used in the computation of Fn−1 and
Fn−2, called memoisation. The following definition has
improved complexity by means of this device.

fibs = 0:1:zipWith (+) fibs (tail fibs)

The previous definition relies on the standard func-
tion zipWith; it is reproduced below from the stan-
dard prelude.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith _ _ _ = []

13 ‘Ad hoc’ polymorphism

Apart from functions that behave uniformly over dif-
ferent types – encountered in §10 – we often come
across functions that behave differently over different
types, but all their different behaviours are concep-
tually similar and we may want to emphasise this by
using the same function symbol defined over different
types. The function is said to be overloaded.

For instance, it is convenient to have the symbol +
associated with an operation over all numeric types,
but it is inevitable that the function it performs differs
according to the type – adding reals is very different
from adding naturals.

A class of types is defined by specifying functions
– called methods – which must be applicable to all
members of the class – though which they are free to
implement in different ways. This is reminiscent of
the signature of an algebra.

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

The code above is drawn from Haskell’s prelude
and describes the methods that a type must imple-
ment in order to gain membership in the numeric
class. The type of natural numbers is defined next as
an algebraic type then instantiated in the Num a class.

data Nat = Z | S Nat

deriving (Eq,Show,Read)

instance Num Nat where

Z + n = n

(S n) + m = S (n + m)

Z - _ = Z

n - Z = n

(S n) - (S m) = n - m

Z * _ = Z

(S n) * m = m + (n * m)

negate x = x

abs x = x

signum x = x

fromInteger 0 = Z

fromInteger n =

if (n > 0)

then S (fromInteger $ n-1)

else error "Cannot cast negative integer

into Nat."

The function error used in the previous definition
has the following type:

error :: String -> a

Instead of causing the program to abort it might be
preferable to use a mechanism to raise and capture
exceptions. This can be done through monads – to be
outlined in §15 – or alternatively “partial values” can
be used: one can allow the option of not returning
a value. This can be done by “wrapping” the return
values in values of the Maybe a type, which is defined
next and is part of Haskell’s Prelude.

6

data Maybe a = Nothing

| Just a

13.1 Readable and Showable values

Values which at some point need to be input or out-
put need to be changed to or from values of String
type. The classes Show a and Read a collect types that
are printable and readable, respectively. For types to
belong to these classes they need to instantiate the
methods show and read respectively; their types are
described below. Note that in these signatures the op-
erator => seeks to restrict the range of type variables
to particular classes – in this case instances of a are
being restricted to members of classes Show and Read
respectively.

show :: (Show a) => a -> String

read :: (Read a) => String -> a

14 Modules

Haskell’s module system is remarkably simple.
Through modules one defines scopes which may be
extended to include other scopes upon importing the
module.

Module names start with an uppercase alphabetical
symbol, and modules are defined as in the following
sketch. Note that there is no need to mark the end of
the module – it ends when the containing file ends.

module MName (exportList) where

import AnotherModule

import qualified OtherModule

The module’s interface is defined by its export list:
a comma-separated list of type and value definition
names that are introduced to the importing scope. If
the (meta) phrase (exportList) is omitted then ev-
erything contained in the module is exported. Mod-
ules themselves may import other modules – as long
as cycles are not created – and when importing a mod-
ule one can choose to limit its interface by hiding cer-
tain parts of its export list – this is usually done to
avoid name clash resulting from a definition in the
export list sharing the name of another definition al-
ready in scope. If both these definitions are required
then one can specify the names of imported defini-
tions to be fully-qualified – indicated by the modifier
qualified in the code sketch above.

There are some more module-related rules:

• A Haskell file may only contain a single module.

• The name of a module must match the name of
the file containing it.

• Modules cannot themselves contain other mod-
ules.

A runnable example of a module will be given next.

14.1 Abstract Datatypes

By being selective of what to export from a module
we can hide the concrete types of some definitions; by
doing so we can define abstract datatypes. A stack
ADT is defined next.

newtype T’ = Constr T

module Stack (

Stack,

newStack,

push,

pop,

isEmpty

) where

newtype Stack a = Stk [a]

newStack = Stk []

push (Stk s) v = Stk (v:s)

pop (Stk (v:s)) = (v, Stk s)

isEmpty (Stk s) = case s of

[] -> True

_ -> False

instance Eq a => Eq (Stack a) where

(Stk x) == (Stk y) = x == y

From the script one can observe that the concrete
type of the stack is a list. This is not inferable from
outside the module despite exporting the type Stack
since the constructor Stk is not being exported. This
hidden information shields the concrete type infor-
mation from external view, making it necessary to
use solely interface functions in order to manipulate
stacks.

The end of the script shows an instantiation of
stacks in the class of types of which values may be
compared for equality. This property depends on
whether we can contain the objects within the stack
for equality; this dependency is reflected in the speci-
fication of the instantiation block.

15 Monads

Monads have the reputation of being one of Haskell’s
most obscure features. It has been said that this is in

7

Input Output

putChar :: Char -> IO () getChar :: IO Char

putStr :: String -> IO ()

putStrLn :: String -> IO () getLine :: IO String

Table 1: Standard functions for string I/O

Input Output

print :: (Show a) => a -> IO () readLn :: (Read a) => IO a

readIO :: (Read a) => String -> IO a

Table 2: Standard functions for “generic” I/O

large part due to their obscure name. They originate
in category theory and, roughly-speaking, serve to in-
terface the pure world of functions with solutions to
real-world problems. Gordon [2] elaborates on differ-
ent approaches to this problem.

The purpose of monads is to make the sequence
of computation explicit. In effect, this distinguishes
functions that occur at different stages in the process of
deriving output from input: that is, calling the same
function from different points in this process might
yield a different value.

In the abstract, monads can be described by the
following class definition.

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

The operation >>= (read bind) sequences computa-
tions into a process, and return introduces values to
form a process. Monads stratify functions; a monad
has been described as a “sticky” tag on types which
a function cannot lose if it contains a monadic part.
For instance, a function that at some point uses the
I/O monad reflects this in its type signature. This is
not generally true, however, since Haskell provides a
backdoor, by means of the function unsafePerformIO.
This is described further in §16.1.

Monadic laws will be described next in order to
specify the expected behaviour of these operations. In
§13 it was suggested that type classes are signatures of
Σ-algebras; the following equations correspond to the
laws that the Σ-algebras are expected to respect. Here
≡ denotes semantical equivalence. The third equation
carries the side-condition that the variable x is not free
in g.

• (return x) >>= f ≡ f x

• v >>= return ≡ v

• (v >>= g) >>= f ≡ v >>= (\x -> g x >>= f)

So far we have seen monads in the abstract; we
now turn to some concrete instances. Many ideas
can be expressed within the monadic framework, for
instance values in [a] and Maybe a.

instance Monad [] where

l >>= f = (concat . map f) l

return x = [x]

The monadic nature of lists is made clear by the
above instantiation: single values form singleton lists;
from the type signature of >>=, expression f must of
type a -> [b] and is suitably applied to l to yield a
value in [b].

instance Monad Maybe where

(Just x) >>= f = f x

Nothing >>= f = Nothing

return x = Just x

In order to verify that these are indeed valid
monadic instances one must check that the definitions
obey the monadic laws.

15.1 I/O

One of the most appreciable practical uses of monads
in Haskell programming is for performing I/O. The
IO a monad is the type of computations returning a
value of type a; output computations are not expected
to return anything, so they are usually typed IO ().

A distinction that must be drawn early is between
I/O in terms of strings and that in terms of arbitrary
types – modulo their belonging to the classes Show a
and Read a described previously in §13.1. The differ-
ence between the two can be seen from the description
of the I/O functions in Table 1 and Table 2: the func-
tions in the latter expect the (Haskell) type of the input
object to be inferable, or given explicitly. The follow-
ing examples define functions of type IO () and show
the composition of effectful computations using bind.

8

--reads a character line, then prints it

echo = getLine >>= putStr

--reads an integer, then prints it

echo’ = (readLn::IO Integer) >>= (putStr.show)

It is useful to have the following standard defini-
tion. An example of its use follows.

(>>) :: (Monad m) => m a -> m b -> m b

(>>) m n = m >>= _->n

The following programs are equivalent:

• putStr "1" >>= \x->putStr "2"

• putStr "1" >> putStr "2"

The donotation simulates imperative programming
style in a purely-functional setting; it is provided as
syntactical sugaring. The previous definitions are re-
stated next using this notation. Note that in the new
definition of echo’ a generic output function is used,
instead of first casting into a string then printing the
string as in the previous definition. The operator <-
emulates variable assignment.

echo = do x <- getLine

putStr x

echo’ = do x <- (readLn::IO Integer)

print x

15.2 State

When using “pure” functions state must be threaded
explicitly throughout the computation. This is un-
wieldy, so monads together with the do notation can
be combined to propagate state implicitly.

Imperative programs can be regarded as state trans-
formers. Modelled functionally, they are instances of
a function of type s -> (s,a), where s is the type of
the state and a is the output of the function – trans-
formation of the state is a side-effect when it does not
appear in the function’s signature. The following sim-
plistic example shows how to code stateful programs
in Haskell. To start one must import the appropriate
library and specify what information the state should
contain; this is done below in the type St that specifies
that the state is of type Bool and that the return value
of functions will be of type Int. Then initVal speci-
fies a start value; note that its type is made explicit by
the accompanying annotation.

import Control.Monad.State

type St = State Bool Int

initVal = (return 5)::St

The state transformation function is coded next.
The definition stTransf below flips the Boolean state
value, it uses the provided combinators get and put
and returns a dummy integer value. The definition
valTransf focuses instead on the value returned by
the function rather than transforming the state, and
invokes incwhich increments this value. An alterna-
tive specification of inc is given below it.

stTransf :: St -> St

stTransf w = do x <- get

put $ not x

return 0

valTransf :: St -> St

valTransf w = do one <- inc w

two <- inc w

return two

inc :: St -> St

inc w = fmap (+1) w

inc’ w = do x <- w

return $ x+1

The reference to the state in valTransfmay be fac-
tored out, and the definition can be restated as follows.
Also note that the line one <- inc w is redundant,
since it inc does not influence the state and merely
increments the value it received – this is done by the
line that follows it too. Note that in general definitions
need not be classified into those focusing on state and
others on values.

valTransf :: St -> St

valTransf = do

two <- inc

return two

These definitions can be composed into a definition
that mixes modification of the state with that of the
output value, as shown in transf. Note that the out-
put value of stTransf has been discarded. The defi-
nition is followed by a few test functions to show how
the computation is started: the combinator runState
is applied to a state transformer and an initial state.
This combinator returns a pair consisting of the out-
put value and the contents of the state. However, one
is usually not interested in the contents of the state:
the combinator evalState can be used to return only
the value of the computation.

transf :: St -> St

transf = do stTransf

x <- valTransf

return x

9

run1 = runState initVal False

run1’ = runState (stTransf initVal) False

run2 = runState (transf initVal) False

run = evalState (transf initVal) False

16 Practical techniques

Haskell’s rules are in place to guard against the intro-
duction of a large class of errors, but in practice it is
true both that playing by Haskell’s rules may be te-
dious, and that Haskell’s rules are far from sufficient
to guarantee correctness. This section describes how
the rules can be bent and also complemented.

16.1 Q’n’D

Sometimes programming must be quick and dirty.
One can cock a snook at Haskell’s type system by
using the function unsafeCoerce.

unsafeCoerce :: a -> b

unsafePerformIO :: IO a -> a

The function unsafePerformIO, that prints values
from anywhere within a definition, is generally more
useful. Note that this collapses the type stratification
described earlier, as is evident from its type signa-
ture. The following definition sequentially composes
together producing output and the evaluation of an
expression. Note that this definition takes up the type
of the expression that it gets passed; in fact it behaves
like the identity function with a side-channel, modulo
the first argument.

import System.IO.Unsafe

priorPrint :: String -> a -> a

priorPrint str exp =

seq (unsafePerformIO $ putStr $ str) exp

The previous definition used the combinator seq
which behaves as follows: it evaluates the first argu-
ment and returns the second. This is used to offer
programmers control over evaluation – they can force
strict evaluation, using the strict application operator
$! defined below.

seq :: a -> b -> b

($!) :: (a -> b) -> a -> b

f $! x = x ‘seq‘ f x

16.2 QuickCheck

QuickCheck [1] is a Haskell library intended to as-
sist in defining Haskell function properties within
Haskell, and verifying these properties for a finite
collection of values using random testing.

The properties of Haskell functions are themselves
encoded as Haskell functions and described using
combinators provided by the QuickCheck library. The
library also contains definitions that help in describ-
ing the distribution of random inputs that will be fed
in during testing. It also facilitates the definition of in-
put generators for user-defined types and controlling
the size of inputs produced.

An appeal of using QuickCheck is that it incen-
tivates documenting the program using source-level
specifications of functions since the specification may
be used to test the implementation. Moreover, since
the specifications are themselves Haskell functions,
both the specification and implementation are ex-
pressed in the same formalism; the programmer is
not required to learn a new language. A specification
is tested by applying the function quickCheck to it.

The following code snippets demonstrate build-
ing a specification and making it checkable by
QuickCheck, that for any t::Tree a it is the case that

size t > 2(heightt)

The Haskell encoding of this property is straight-
forward:

prop_SizeHeight :: (Tree Int) -> Bool

prop_SizeHeight t = (size t) > 2 * (height t)

Note that despite the property applying to arbitrary
types contained within a Tree, the above function has
been restricted to a monomorphic definition by means
of its type signature. This is necessary in order to
indicate to quickCheck the appropriate random data
generator to invoke. The definition of height was
given in §12, and size is defined below.

size :: (Tree a) -> Int

size Leaf = 1

size (Node _ t1 t2)

= 1 + (size t1) + (size t2)

In order to test whether the specified law holds
the quickCheck function is applied to it to carry out
random testing. It is up to the programmer to provide
some characterisation for arbitrary values of this type
according to some distribution. The following code
is adapted from the original paper on QuickCheck [1]
and instantiates values of Tree a in the class of types
for which random values can be synthesised.

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = sized arbTree

10

The function arbTree generates finite and fully-
defined tree values. The values generated are
bounded in size by using the combinator sized.

arbTree 0 = return Leaf

arbTree n = frequency

[(1, return Leaf)

, (4, liftM3 Node arbitrary

(arbTree (n ‘div‘ 2))

(arbTree (n ‘div‘ 2))

)

]

The definition of arbTree is parametrised by the
maximum size of the tree it is to produce – note that
the trees produced are not necessarily balanced, since
arbTree’s parameter only sets an upper bound. The
function liftM3 lifts a pure 3-ary function to be ap-
plicable to three monadic values. The distribution
of values it produces is controlled by means of the
frequency combinator: it is four times more likely to
produce an inner node than a leaf. It calls arbitrary
to generate random integers for the tree to contain
and, in the interest of termination, halves the maxi-
mum size expected of subtree values.

Now testing the implementation yields the follow-
ing:

quickCheck prop_SizeHeight

{ OK, passed 100 tests.

QuickCheck can be tuned in various ways, for in-
stance to carry out more tests or produce more verbose
output about the tests made. In the case that a test fails
it returns the input values that falsified the property.

One could argue that using QuickCheck increases
the scope where bugs may appear since it requires
complementing an implementation with a specifica-
tion and possibly with a definition of arbitrary values
of a particular type. As always, care is required on
the programmer’s part, but because of the richer in-
formation being pressed into the source file it is easier
to observe errors in both implementation and specifi-
cation.

Acknowledgements

I thank Stefan Kahrs for providing feedback.

References

[1] K. Claessen and J. Hughes. QuickCheck: A
Lightweight Tool for Random Testing of Haskell
programs. Proceedings of the fifth ACM SIGPLAN
International Conference on Functional Programming,
pages 268–279, 2000.

[2] A.D. Gordon. Functional Programming and In-
put/Output. Cambridge University Press, 1994.

[3] S.P. Jones et al. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press,
2003.

[4] Simon Thompson. A Logic for Miranda. Formal
Aspects of Computing, 1:339–365, 1989.

[5] Simon Thompson. Haskell: The Craft of Functional
Programming. Addison-Wesley, 1999. Second edi-
tion.

[6] Mads Tofte. Tips for Computer Scientists on
Standard ML. Revised version. Obtainable from
http://www.itu.dk/people/tofte, April 2008.

11

	Introduction
	Practical matters
	Command line matters

	Functional paradigm
	Semantics
	Comments
	Prelude
	Definitions
	Types
	Functions
	Functionals

	Parametric polymorphism
	Lists
	Algebraic types
	Impact of laziness

	`Ad hoc' polymorphism
	Readable and Showable values

	Modules
	Abstract Datatypes

	Monads
	I/O
	State

	Practical techniques
	Q'n'D
	QuickCheck

